AdaptiveStressTestingToolbox
Release 2020.09.01.0

Oct 25, 2020

Contents

Adaptive Stress Testing Toolbox

Overview

2.1 Installation e e
2.2 Documentation i i e e e e e e e e e e e e e e e e e e e
2.3 Development e e e e e e e e e e e e e e e e
24 Acknowledgements e e
Tutorial

3.1 DlIntroduction e e e
3.2 2CreatingaSimulator e e e e e e e e
33 3CreatingaReward Function
34 4 Creatingthe Spaces o e e
3.5 SCreatingaRunner e e e e e e e e
3.6 6 Runningthe Example e e e
Installation

Usage

Contributing

6.1 Bugreports e e
6.2 Documentation improvements e i e e e e e e e e e e e e e e
6.3 Feature requests and feedback L
6.4 Development e e e e e
Authors

Changelog

8.1 2020.06.01.devl (2020-05-17) v v e e e e e e e e
8.2 2020.09.01.devl (2020-09-01) o o e e
ast_toolbox

9.1 ast_toolbox package e

10 Indices and tables

Python Module Index

25

27

31
31
31
31
32

35

37
37
37

39

113

115

Index 117

CHAPTER 1

Adaptive Stress Testing Toolbox

v2020.09.01.0.

https://travis-ci.org/sisl/AdaptiveStressTestingToolbox
https://ast-toolbox.readthedocs.io/en/latest/?badge=latest
https://codecov.io/gh/sisl/AdaptiveStressTestingToolbox
https://github.com/sisl/AdaptiveStressTestingToolbox/blob/master/LICENSE

AdaptiveStressTestingToolbox, Release 2020.09.01.0

2 Chapter 1. Adaptive Stress Testing Toolbox

CHAPTER 2

Overview

A toolbox for worst-case validation of autonomous policies.

Adaptive Stress Testing is a worst-case validation method for autonomous policies. This toolbox is being actively
developed by the Stanford Intelligent Systems Lab.

See https://ast-toolbox.readthedocs.io/en/latest/ for documentation.
Maintained by the Stanford Intelligent Systems Lab (SISL)

¢ Free software: MIT license

2.1 Installation

2.1.1 Pip Installation Method

You can install the latest stable release from pypi:

pip install ast-toolbox

You can also install the latest version with:

pip install git+ssh://git@https://github.com/sisl/AdaptiveStressTestingToolbox.
—git@master

Using the Go-Explore work requires having a Berkely DB installation findable on your system. If you are on Linux:

sudo apt—-get update
sudo apt install libdb-dev python3-bsddb3

If you are on OSX:

https://ast-toolbox.readthedocs.io/en/latest/
http://sisl.stanford.edu/

AdaptiveStressTestingToolbox, Release 2020.09.01.0

brew install berkeley-db
export BERKELEYDB_DIR=$ (brew —-cellar)/berkeley-db/5.3
export YES_TI_HAVE_THE_RIGHT_TO_USE_THIS_BERKELEY_DB_VERSION=1

Once you have the Berkeley DB system dependency met, you can install the toolbox:

pip install ast-toolbox[ge]

2.1.2 Git Installation Method

If you are interested in development, you should clone the repo. You can use https:

’git clone https://github.com/sisl/AdaptiveStressTestingToolbox.git

You can also use ssh:

’git clone git@github.com:sisl/AdaptiveStressTestingToolbox.git

If you are on Linux, use the following commands to setup the Toolbox:

cd AdaptiveStressTestingToolbox

git submodule update —--init —--recursive
sudo chmod a+x scripts/install_all.sh
sudo scripts/install_all.sh

source scripts/setup.sh

2.2 Documentation

You can find our documentation on readthedocs.

2.3 Development

Please see our Contributions Guide.

2.4 Acknowledgements

Built using the cookiecutter-pylibrary by Ionel Cristian Maries

4 Chapter 2. Overview

https://ast-toolbox.readthedocs.io/en/latest/
https://ast-toolbox.readthedocs.io/en/latest/contributing.html
https://github.com/ionelmc/cookiecutter-pylibrary

CHAPTER 3

Tutorial

This tutorial is up-to-date for version 2020.09.01.0°

3.1 1 Introduction

This tutorial is intended for readers to learn how to use this package with their own simulator. Familiarity with the
underlying theory is recommended, but is not strictly necessary for use. Please install the package before proceeding.

3.1.1 1.1 About AST

Adaptive Stress Testing is a way of finding flaws in an autonomous agent. For any non-trivial problem, searching the
space of a stochastic simulation is intractable, and grid searches do not perform well. By modeling the search as a
Markov decision process (MDP), we can use reinforcement learning to find the most probable failure. AST treats the
simulator as a black box, and only needs access in a few specific ways. To interface a simulator to the AST packages,
a few things will be needed:

* A Simulator wrapper that exposes the simulation software to this package. See 2./ Simulation Options for
details on closed-loop vs. open-loop Simulators

* A Reward function dictates the optimization goals of the algorithm.

* The Spaces objects give information on the size and limits of a space. This will be used to define the Observa-
tion Space and the Action Space

* A Runner collects all of the run options and starts the experiment.

3.1.2 1.2 About this tutorial

In this tutorial, we will test a basic autonomous vehicle’s ability to safely navigate a crosswalk. We will find the
most-likely pedestrian trajectory that leads to a collision. The remainder of the tutorial is organized as follows:

¢ In Section 2, we will interface with a simulator (2 Creating a Simulator).

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* In Section 3, we will create a reward function (3 Creating a Reward Function).
* In Section 4, we will define the action and state spaces (4 Creating the Spaces).
* In Section 5, we will create a runner file (5 Creating a Runner).

¢ In Section 6, we run the experiment (6 Running the Example).

3.2 2 Creating a Simulator

This sections explains how to create a wrapper that exposes your simulator to the AST package. The wrapper allows
the AST solver to specify actions to control the stochasticity in the simulation. Examples of stochastic simulation
elements could include an actor, like a pedestrian or a car, or noise elements, like on the beams of a LIDAR sensor.
The simulator must be able to reset on command and detect if a goal state had been reached. The simulator state can be
used, but is not necessary. Before we begin, let’s define 3 different settings that tell the ASTEnv what sort of simulator
it is interacting with.

We will be wrapping an example autonomous vehicle simulator that runs a toy problem of an au-
tonomous vehicle approaching a crosswalk with pedestrians crossing. The simulator code can be found at
ast_toolbox.simulators.example_av_simulator.toy_av_simulator.py.

3.2.1 2.1 Simulation Options

Three options must be specified to inform ASTEnv what type of simulator it is interacting with. They are listed as
follows, with the default in bold, and the actual variable name in parentheses:

¢ Open-loop vs. Closed-loop control (open_loop): A closed-loop simulation is one in which control can be
injected at each step during the actual simulation run, vs an open-loop simulation where all actions must be
specified ahead of time. Essentially, in a closed-loop system we are “closing the loop” by including the toolbox
in the calculation of each timestep. For example, if a simulation is run by creating a specification file, and no
other control is possible, that simulation would be open-loop. There is no inherent advantage to either mode,
and open-loop will be far more common. Closed-loop mode will generally only be used by white-box systems,
where closed-loop control is required.

* Black box simulation state vs. White box simulation state (blackbox_sim_state): When running in black box
simulation mode, the solver does not have access to the true state of the simulator, instead choosing actions
based on the initial condition and the history of actions taken so far. If your simulator can provide access to the
simulation state, it can be faster and more efficient to run in white box simulation mode, in which the simulation
state is used as the input to the reinforcement learning algorithm at each time step. White box simulation mode
requires closed-loop control.

 Fixed initial state vs. Generalized initial state (fixed_init_state): A simulation with a fixed initial state starts
every rollout from the exact same simulation state, while a simulation with a Generalized initial state samples
from a space of initial conditions. For example, if you had a 1-D state space, starting at x=0 would be a fixed
initial state, while sampling x from [-2,2] at the start of each simulation would be a generalized initial state. For
more information on the specifics see ‘Efficient Autonomy Validation in Simulation with Adaptive Stress
Testing https://arxiv.org/abs/1907.06795>¢_.

3.2.2 2.2 Inheriting the Base Simulator

Start by creating a file named example_av_simulator.py in the simulators folder. Create a class titled
ExampleAVSimulator, which inherits from Simulator.

6 Chapter 3. Tutorial

https://github.com/sisl/AdaptiveStressTestingToolbox/blob/master/src/ast_toolbox/simulators/example_av_simulator/toy_av_simulator.py

AdaptiveStressTestingToolbox, Release 2020.09.01.0

import numpy as np
from ast_toolbox.simulators import ASTSimulator

from ast_toolbox.simulators.example av_simulator import ToyAVSimulator

—

class ExampleAVSimulator (ASTSimulator) :

The base generator accepts four values, three of which are boolean values for the settings defined in 2./ Simulation
Options:

* max_path_length: The horizon of the simulation, in number of timesteps
* open_loop: True for open-loop simulation, False for closed-loop simulation
¢ blackbox_sim_state: True for black box simulation state, False for white box simulation state
* fixed_init_state: True for fixed initial simulation state, False for generalized initial simulation state
A child of the ASTSimulator class is required to define the following three functions:
¢ simulate.
e get_reward_info.
e is_goal.
The following functions may be optionally overridden as well:
* closed_loop_step.
* reset.
e clone_state.
* restore_state.
¢ render.
Finally, it is not recommended that you touch these functions:
* Step.
* observation_return.
e is_terminal.

For use with the Go-Explore algorithm, the clone_state and restore_state functions must be defined.

3.2.3 2.3 Initializing the Example Simulator

Our example simulator takes 3 values: * num_peds: The number of pedestrians in the scenario. * simulator_args:
A dict of named arguments to be passed to the toy simulator. * kwargs: Any keyword arguement not listed here.
In particular, the base class arguments covered in 2.2 Inheriting the Base Simulator should be passed to the base
Simulator as one of the **kwargs.

The toy simulator will control a modified version of the Intelligent Driver Model (IDM) as our system under test
(SUT), while adding sensor noise and filtering it out with an alpha-beta tracker. Initial simulation conditions are
needed here as well. Because of all this, the Simulator accepts a number of inputs:

e num_peds: The number of pedestrians in the scenario

* dt: The length of the time step, in seconds

3.2. 2 Creating a Simulator 7

AdaptiveStressTestingToolbox, Release 2020.09.01.0

« alpha: A hyperparameter controlling the alpha-beta tracker that filters noise from the sensors
* beta: A hyperparameter controlling the alpha-beta tracker that filters noise from the sensors
* v_des: The desired speed of the SUT

e t_headway: An IDM hyperparameter that controls the target seperation between the SUT and the agent it is
following, measured in seconds

* a_max: An IDM hyperparameter that controls the maximum acceleration of the SUT

e s_min: An IDM hyperparameter that controls the minimum distance between the SUT and the agent it is
following

e d_cmf: An IDM hyperparameter that controls the maximum comfortable decceleration of the SUT (a soft
maximum that is only violated to avoid crashes)

* d_max: An IDM hyperparameter that controls the maximum decceleration of the SUT
* min_dist_x: Defines the length of the hitbox in the x direction

* min_dist_y: Defines the length of the hitbox in the y direction

* car_init_x: Specifies the initial x-position of the SUT

 car_init_y: Specifies the initial y-position of the SUT

In addition, there are a number of member variables that need to be initialized. The code is below:

def _ init_ (,
num_peds=1,
simulator_args=None,
**xkwargs) :

.c_num_peds = num_peds
if simulator_args is None:
simulator_args = {}

._action = np.array ([0] * (6 * .c_num_peds))
.simulator = ToyAVSimulator (num_peds=num_peds, **simulator_args)

() .__init__ (xxkwargs)

3.2.4 2.4 The simulate function:

The simulate function runs a simulation using previously generated actions from the policy to control the stochasticity.
The simulate function accepts a list of actions and an initial state. It should run the simulation, then return the timestep
in which the goal state was achieved, or a -1 if the horizon was reached first. In addition, this function should return
any simulation info needed for post-analysis.

For the example, out toy simulator conveniently has a single function to call that already follows the same conventions.
Note that in most cases, the simulate function may require significantly more API calls to the simulator, as well as
changing the inputs and outputs to forms the simulator will accept and back again. Now we implement the simulate
function, checking to be sure that the horizon wasn’t reached:

def simulate (, actions, s_0):
return .simulator.run_simulation (actions=actions, s_0=s_0, simulation_
—horizon= .c_max_path_length)

8 Chapter 3. Tutorial

AdaptiveStressTestingToolbox, Release 2020.09.01.0

3.2.5 2.5 The closed_loop_step function (Optional):

If a simulation is closed-loop, the closed_loop_step function should step the simulation forward at each
timestep. The functions takes as input the current action. We return the output of observation_return function
defined by the ASTSimulator, which ensures we return the correct values depending on the simulator settings. It
is highly recommended to use this function. If the simulation is open-loop, other per-step actions can still be put here
if it is desirable - this function is called at each timestep either way. Since we are running the simulator open-loop in
this tutorial, we could just have this function return None. However, we have implemented the function as an example
of how the simulator could be run closed-loop.

Again, our toy simulator already has a closed-loop mode that follows the same convention so we can just call the
step_simulation function.

def closed_loop_step (, action):
.observation = np.ndarray.flatten .simulator.step_simulation (action))
return .0bservation_return ()

3.2.6 2.6 The reset function (Optional):

The reset function should return the simulation to a state where it can accept the next sequence of actions. In some
cases this may mean explicitly resetting the simulation parameters, like SUT location or simulation time. It could
also mean opening and initializing a new instance of the simulator (in which case the simulate function should
close the current instance). Your implementation of the reset function may be something else entirely, it is highly
dependent on how your simulator functions. The method takes the initial state as an input, and returns the state of
the simulator after the reset actions are taken. If reset is defined, observation_return should again be used to
return the correct observation type. In addition, the super class’s reset must still be called.

Our toy simulator already has a reset function, so we just call the super class’s reset, call the toy simulator’s reset, and
then return observation_return.

def reset (, s_0):
(ExampleAVSimulator,) .reset (s_0=s_0)
.observation = np.ndarray.flatten .simulator.reset (s_0))

3.2.7 2.7 The get_reward_info function:

It is likely that your reward function (see 3 Creating a Reward Function) will need some information from the simu-
lator. The reward function will be passed whatever information is returned from this function.

For the example, the example reward function uses a heuristic reward to help guide the policy toward failures — when
a trajectory ends without a crash, an extra penalty is applied that scales with the distance between the SUT and the
nearest pedestrian in the last timestep. To do this, both the car and pedestrian locations are returned. In addition,
boolean values indicating whether a crash has been found or if the horizon has been reached are returned. To access
these values, we grab the ground truth state from the toy simulator.

sim_state = .simulator.get_ground_truth ()

(continues on next page)

3.2. 2 Creating a Simulator 9

AdaptiveStressTestingToolbox, Release 2020.09.01.0

(continued from previous page)

return {"peds": sim_state['peds'],
"car": sim_state['car'],
_goal": .is_goal(),

"is_terminal": .1s_terminal ()}

ar

[L

3.2.8 2.8 The is_goal function:

This function returns a boolean value indicating if the current state is in the goal set.

In the example, this is True if the pedestrian is hit by the car. The toy simulator has a collision_detected
function that we can call to check for a collision.

def is_goal ()t

return .simulator.collision_detected()

3.2.9 2.9 The log function (Optional):

The log function is a way to store variables from the simulator for later access.

In the example, some simulation state information is appended to a list at every timestep after getting the ground truth
from the toy simulator.

sim_state = .simulator.get_ground_truth ()

cache = np.hstack([0.0,

-
sim_state['step'],
np.ndarray.flatten
np.ndarray.flatten
np.ndarray.flatten
np.ndarray.flatten
0.01)

sim_state[
sim_state][
sim_state['action ,
sim_state] r_obs']),

[

(
(
(
('

._info.append (cache)

3.2.10 2.10 The clone_state and restore_state functions (Optional):
Some parts of the Toolbox (for example, Go-Explore and the Backward Algorithm) rely on deterministic resets of the
simulator to find failures efficiently. The clone_state and restore_state functions provide this functionality.

The clone_state function should return a 1-D numpy array with enough information to deterministically reset the
simulation to an exact state.

In our example, the toy simulator’s get_ground_truth returns a dictionary of state variables, so we arrange them
into a numpy array:

def clone_ state()t

(continues on next page)

10 Chapter 3. Tutorial

AdaptiveStressTestingToolbox, Release 2020.09.01.0

(continued from previous page)

simulator_state = .simulator.get_ground_truth ()

return np.concatenate((np.array([simulator_state['ster
np.array ([simulator_state['path_length']l]),
np.array ([(simulator_state['is terminal'l)]),
simulator_state['car'],
simulator_statel
simulator_state]
simulator_state[
[
[

LI

].flatten(),

ca s'].flatten(),
‘action'].flatten(),

'"initial conditions']l), axis=0)

simulator_state
simulator_state

The restore_state function should accept a 1-D array and use it to deterministically reset it to a specific state.
How you do the reset is up to you, whether it is through a reset style scenario instantiation, through running the
simulator from the start back to the exact same point, or another method altogether.

The toy simulator has a set_ground_truth function that sets it to a specific state, so we will use that. We take
the 1-D array and translate it back into a dictionary of state variables that the toy simulator wants. We also set the state
variables of the ExampleAVSimulator:

def restore state(, in_simulator_state):

simulator_state = {}

simulator_state['step'] = in_simulator_state[0]

simulator_state['path_length'] = in_simulator_state[1]

simulator_state['is terminal'] = (in_simulator_state([2])

simulator_state['car'] = in_simulator_state[3:7]

simulator_state['car accel'] = 1in_simulator_state[7:9]

peds_end_index = 9 + .c_num_peds * 4

simulator_state['peds'] = in_simulator_state[9:peds_end_index].reshape ((.C_
—num_peds, 4))

car_obs_end_index = peds_end_index + .c_num_peds x 4

simulator_state['car obs'] = in_simulator_state[peds_end_index:car_obs_end_index].
—reshape ((.c_num_peds, 4))

simulator_state['action'] = in_simulator_state[car_obs_end_index:car_obs_end_
—index + ._action.shape[0]]

simulator_state['initial conditions'] = in_simulator_state[car_obs_end_index +
N ._action.shape([0]:]

.simulator.set_ground_truth(simulator_state)

._info = []

.initial_conditions = np.array(simulator_state['initial cc ns'])
._is terminal = simulator_state['is terminal']

._path_length = simulator_state(['path_ length']

3.3 3 Creating a Reward Function

This section explains how to create a function that dictates the reward at each timestep of a simulation. AST formulates
the problem of searching the space of possible rollouts of a stochastic simulation as an MDP so that modern-day

3.3. 3 Creating a Reward Function 11

AdaptiveStressTestingToolbox, Release 2020.09.01.0

reinforcement learning (RL) techniques can be used. When optimizing a policy using RL, the reward function is of
the utmost importance, as it determines what behavior the agent will learn. Changing the reward function to achieve
the desired policy is known as reward shaping.

3.3.1 3.1 Reward Shaping

SPOILER ALERT: This section uses a famous summer-camp game as an example. If you are planning on attending
a children’s summer-camp in the near future I highly recommend you skip this section, lest you ruin the counselors’
attempts at having fun at your expense. You have been warned.

As an example of reinforcement learning, and the importance of the reward function, consider the famous children’s
game “The Hat Game.” Common at summer-camps, the game usually starts with a counselor holding a hat in his
hands, telling the kids he is about to teach them a new game. He will say “Ok, ready everyone....? I can play the
hat game,” proceed to do a bunch of random things with the hat, such as flipping it over or tossing it in the air, and
then say “how about you?” He will then pass the hat to a camper, who repeats almost exactly everything the counselor
does, but is told “no, you didn’t play the hat game.” Another counselor will take the hat, say the words, do something
completely different with it, and the game is on. The trick is actually the word “OK” - so long as you say that magic
word, you have played the hat game, even if you have no hat.

How does this relate to reward shaping? In this case, the children are the policy. They are taking stochastic actions,
trying to learn how to play the hat game. The key to the game being fun is that the children are predisposed to pay
attention to the hat motions, but not the words beforehand. However, after enough trials (and it can take a long time),
most of them will pick up the pattern and attention will shift to “OK.” In the vanilla game, there are two rewards.
“Yes, you played the hat game” can be considered positive, and “No, you didn’t play the hat game” can be considered
negative, or just zero. By changing this reward, we could make the game difficulty radically different. Imagine if 10
kids tried the game, and all they got was a binary response on if at least one of them played the game. This would
be much harder to pick up on! This is an example of a sparse reward function, or one that only rarely gives rewards,
such as at the end of a trajectory. On the other hand, what if the children received feedback after every single word or
motion on if they had played the hat game during that trial yet. The game would be much easier! These are examples
of how different reward functions can make achieving the same policy easier or harder.

How does this relate yo our tutorial? Similar to the kids, our policy will be trying to learn the correct behavior from
rewards. While some policies may be better at this task than others, all of them will struggle if the reward function is
too sparse. We can make the task much easier, and therefore get better and faster results, if we can introduce heuristic
rewards that guide our policy to failures. .. _tutorial-inheriting-the-base-reward-function:

3.3.2 3.2 Inheriting the Base Reward Function

Start by creating a file named example_av_reward.py in the rewards folder. Create a class title
ExampleAVReward which inherits from ASTReward:

import numpy as np

from ast_toolbox.rewards import ASTReward

class ExampleAVReward (ASTReward) :

The base class does not take any inputs, and there is only one required function - give_reward.

12 Chapter 3. Tutorial

AdaptiveStressTestingToolbox, Release 2020.09.01.0

3.3.3 3.3 Initializing the Example Reward Function
The reward function will be calculating some rewards based on the probability of certain actions. We have assumed
the means action is the 0 vector, but we still need to take the following inputs:

* num_peds: The number of pedestrians in the scenario

* cov_x: The covariance of the gaussian distribution used to model the x-acceleration of a pedestrian

* cov_y: The covariance of the gaussian distribution used to model the y-acceleration of a pedestrian

* cov_sensor_noise: The covariance of the gaussian distribution used to model the noise on a sensor measurement
in both the x and y directions (assumed equal)

* use_heuristic: Whether our reward function should use the heuristic reward we provide. As mentioned above,
using this reward, when possible, will improve results and decrease training time.

The code is below:

def _ init_ ¢ ,
num_peds=1,
cov_x=0.1,
cov_y=0.01,
cov_sensor_noise=0.1,
use_heuristic=True) :

.c_num_peds = num_peds
.C_COV_X = COV_X
.C_COV_Yy = COV_Yy

.C_COV_Sensor_noise = cov_sensor_noise
.use_heuristic = use_heuristic
() .__init_ ()

3.3.4 3.4 The give_reward function

Our example reward function is broken down into three cases, as specified in the paper. The three cases are as follows:
1. There is a crash at the current timestep
2. The horizon of the simulation is reached, with no crash
3. The current step did not find a crash or reach the horizon
The respective reward for each case is as follows:
1. R=0
2. R=-1ES - 1E4 * {The distance between the car and the closest pedestrian}
3. R =-log(1 + {likelihood of the actions take})

For case 2, we use the distance between the car and the closest pedestrian as a heuristic to increase convergence speed.
In the early trials, this teaches pedestrians to end closer to the car, which makes it easier to find crash trajectories (see
3.1 Reward Shaping). For case 3, using the negative log-likelihood allows us to sum the rewards to find a value that is
proportional to the probability of the trajectory. As a stand in for the probability of an action, we use the Mahalanobis
distance, a multi-dimensional generalization of distance from the mean. Add the following helper function to your
file:

3.3. 3 Creating a Reward Function 13

AdaptiveStressTestingToolbox, Release 2020.09.01.0

def mahalanobis_d(, action):

mean = np.zeros((6 * .c_num_peds, 1))

cov = np.zeros ((.c_num_peds, 6))

cov[:, 0:6] = np.array ([.C_COV_X, .c_cov_y,
.C_cov_sensor_noise,
.C_cov_sensor_noise,

big_cov = np.diagflat (cov)

dif = np.copy(action)

dif[::2] == mean([0, 0]

dif[l::2] == mean[l, 0]

dist = np.dot (np.dot (dif.T, np.linalg.inv(big_cov)),

return np.sqgrt (dist)

.C_cov_sensor_noise,
.C_cov_sensor_noisel])

dif)

Now we are ready to calculate the reward. The give_reward function takes in an action, as well as the info
bundle that was returned from the get_reward_info function in the ExampleAVSimulator (see 2.7 The
get_reward_info function:). The code is as follows:

def give_reward(, action, *xxkwargs):
info = kwargs['info']
peds = info["peds"]
car = info["car'"]
is_goal = info["is goal"]
is_terminal = info["is_ terminal]
dist = peds[:, 2:4] = car[2:4]
if (is_goal):
reward = 0
elif (is_terminal):

if .use_heuristic:
heuristic_reward =

else:

np.min(np.linalg.norm(dist

heuristic_reward = 0
reward = =100000 = 10000 % heuristic_reward
else:

reward = - .mahalanobis_d(action)

return reward

, axis=l))

14

Chapter 3. Tutorial

AdaptiveStressTestingToolbox, Release 2020.09.01.0

3.4 4 Creating the Spaces

This section shows how to create the action space and observation space for garage to use. The spaces define the
limits of what is possible for inputs to and outputs from the policy. The observation space can be used as input if the
simulation state is accessible, and can be used to generate initial conditions if they are being sampled from a range.
The action space defines the output space of the policy, and controls the size of the output array from the policy.

3.4.1 4.1 Inheriting the Base Spaces

Create a file named example_av_spaces.py in the spaces folder. Create a class titled ExampleAVSpaces
which inherits from ASTSpaces:

import numpy as np
from gym.spaces.box import Box

from ast_toolbox.spaces import ASTSpaces

class ExampleAVSpaces (ASTSpaces) :

The base spaces don’t take any input, but there are two functions to define: action_space and
observation_space. Both of these functions should return an object that inherits from the “’Space” class, im-
ported from gym. spaces. There are a few options, and you can implement your own, but the Box class is used here.
A Box is defined by two arrays, 1ow and high, of equal length, which specify the minimum and maximum value of
each position in the array. The space then allows any continuous number between the low and high values.

3.4.2 4.2 Initializing the Spaces

In order to define our spaces, there are a number of inputs:
* num_peds: The number of pedestrians in the scenario
* max_path_length: The horizon of the trajectory rollout, in number of timesteps
¢ v_des: The desired velocity of the SUT
* x_accel_low: The minimum acceleration in the x-direction of the pedestrian
* y_accel_low: The minimum acceleration in the y-direction of the pedestrian
¢ x_accel_high: The maximum acceleration in the x-direction of the pedestrian
 y_accel_high: The maximum acceleration in the y-direction of the pedestrian
* x_boundary_low: The minimum x-position of the pedestrian
* y_boundary_low: The minimum y-position of the pedestrian
* x_boundary_high: The maximum x-position of the pedestrian
* y_boundary_high: The maximum y-position of the pedestrian
e x_v_low:: The minimum initial x-velocity of the pedestrian
e y_v_low:: The minimum initial y-velocity of the pedestrian
e x_v_high:: The maximum initial x-velocity of the pedestrian

 y_v_high:: The maximum initial y-velocity of the pedestrian

3.4. 4 Creating the Spaces 15

AdaptiveStressTestingToolbox, Release 2020.09.01.0

e car_init_x: The initial x-position of the SUT
* car_init_y: The initial y-position of the SUT
* open_loop: Whether or not the simulation is being run in open-loop mode (See 2./ Simulation Options)

The initialization code is below:

def _ init_ (,
num_peds=1,
max_path_length=50,
v_des=11.17,
X_accel_low=-1.0,
y_accel_low=-1.0,
x_accel_high=1.0
y_accel_high=1.0,
x_boundary_low=-=10.
y_boundary_low==10.
x_boundary_high=10.
y_boundary_high=10.
x_v_low==-10.0,
y_v_low=-10.0,
x_v_high=10.0,
y_v_high=10.0,
car_init_x==-35.0,
car_init_y=0.0,
open_loop=True,

)t

’

~ ~

o O O O
~

~

.c_num_peds = num_peds
.c_max_path_length = max_path_length
.c_v_des = v_des

.c_x_accel_low = x_accel_low
.c_y_accel_low = y_accel_low
.c_x_accel_high = x_accel_high
.c_y_accel_high = y_accel_high
.c_x_boundary_low = x_boundary_low
.c_y_boundary_low = y_boundary_low
.c_x_boundary_high = x_boundary_high
.c_y_boundary_high = y_boundary_high
.c_x_v_low = x_v_low

.c_y_v_low = y_v_1low

.c_x_v_high = x_v_high

.c_y_v_high = y_v_high

.c_car_1init_x = car_init_x
.c_car_init_y = car_init_y
.open_loop = open_loop
.low_start_bounds = [-1.0, -6.0, =-1.0, 5.0, 0.0, =-6.0, 0.0, 5.0]
.high_start_bounds = (1.0, -1.0, 0.0, 9.0, 1.0, =2.0, 1.0, 9.0]
.v_start = [1.0, =-1.0, 1.0, =1.0]

() .__init__ ()

3.4.3 4.3 The Action Space

The action_space function takes no inputs and returns a child of the Space class. The length of the action space
array determines the output dimension of the policy. Note the @Property decorator in the code below:

16 Chapter 3. Tutorial

AdaptiveStressTestingToolbox, Release 2020.09.01.0

@property
def action_space ()z
Returns a Space objec

nwn

low = np.array ([.c_x_accel_low, .c_y_accel_low, -3.0, =-3.0, =3.0, =3.01)
high = np.array ([.c_x_accel_high, .c_y_accel_high, 3.0, 3.0, 3.0, 3.01)
for i in (1, .c_num_peds) :
low = np.hstack((low, np.array ([.c_x_accel_low, .c_y_accel_low, 0.0,
0.0, 0.0, 0.01)))
high = np.hstack ((high, np.array ([.c_x_accel_high, .c_y_accel_high, 1.

-0, 1.0, 1.0, 1.01)))

return Box (low=low, high=high, dtype=np.float32)

3.4.4 4.4 The Observation Space

The observation_space function takes no inputs and returns a child of the Space class. If the simulation state
is accessible, the ranges of possible values should be defined using this function, which determines the expected input
shape to the policy. If initial conditions are sampled, they will be sampled from the observation space. Therefore,
the observation space should define the maximum and minimum value of every simulation state that will be passed
as input to the policy, as well as a value for every initial condition needed to specify a scenario variation. Note the
@Property decorator in the code below:

@property
def observation_space ()z
Returns a Space object

nwn

low = np.array ([.c_x_v_1low, .c_y_v_low, .c_x_boundary_low, .C_Yy_
—boundary_low])

high = np.array ([.c_x_v_high, .c_y_v_high, .Cc_x_boundary_high, .C
—y_boundary_high])

for i in (1, .c_num_peds) :
low = np.hstack (
(low, np.array ([.c_x_v_1low, .c_y_v_low, .c_x_boundary_1low,
— .c_y_boundary_low])))
high = np.hstack(
(high, np.array ([.c_x_v_high, .c_y_v_high, .c_x_boundary_high,
— .Cc_y_boundary_high])))
if .open_loop:
low = .low_start_bounds|[: .c_num_peds *x 2]
low = low + np.ndarray.tolist (0.0 * np.array(.v_start)) [: .c_num_peds]
low = low + [0.75 =* .c_v_des]
high = .high_start_bounds]|: .c_num_peds * 2]
high = high + np.ndarray.tolist (2.0 % np.array(.v_start)) [: .c_num__
—peds]
high = high + [1.25 * .c_v_des]
if .c_car_init_x > O:

(continues on next page)

3.4. 4 Creating the Spaces 17

AdaptiveStressTestingToolbox, Release 2020.09.01.0

(continued from previous page)

low = low + [0.75 * .c_car_init_x]

high = high + [1.25 * .c_car_init_x]
else:

low = low + [1.25 * .c_car_init_x]

high = high + [0.75 * .c_car_init_x]

return Box (low=np.array(low), high=np.array(high), dtype=np.float32)

3.5 5 Creating a Runner

This section explains how to create a file to run the experiment we have been creating. This will use all of the example
files we have created, and interface them with the a package for handling RL. The backend framework handling the
policy definition and optimization is a package called RLLAB. The project is open-source, so if you would like to
understand more about what RLLAB is doing please see the documentation here.

3.5.1 5.1 Setting Up the Runners

Create a file called example_runner.py in your working directory. Add the following code to handle all of the
necessary imports:

import os
import fire

import tensorflow as tf

from garage.envs.normalized env import normalize

from garage.experiment import run_experiment

from garage.np.baselines.linear feature_baseline import LinearFeatureBaseline

from garage.tf.algos.ppo import PPO

from garage.tf.envs.base import TfEnv

from garage.tf.experiment import LocalTFRunner

from garage.tf.optimizers.conjugate_gradient_optimizer import
—ConjugateGradientOptimizer

from garage.tf.optimizers.conjugate_gradient_optimizer import FiniteDifferenceHvp

from garage.tf.policies import GaussianLSTMPolicy

from ast_toolbox.envs import ASTEnv

from ast_toolbox.rewards import ExampleAVReward

from ast_toolbox.samplers import ASTVectorizedSampler

from ast_toolbox.simulators import ExampleAVSimulator

from ast_toolbox.spaces import ExampleAVSpaces

from ast_toolbox.utils.go_explore_utils import load_convert_and_save_expert_trajectory

3.5.2 5.2 Specifying the Experiment

All of the classes imported earlier will now be used to specify the experiment. We will create a runner function that
takes in dictionaries of keyword arguments for the different objects. The function will define a run_task function

18 Chapter 3. Tutorial

AdaptiveStressTestingToolbox, Release 2020.09.01.0

that executes an experiment, and then will pass this function’s handle to the run_experiment function. See the

garage docs for more info.

def runner (
env_args=None,
run_experiment_args=None,
sim_args=None,
reward_args=None,
spaces_args=None,
policy_args=None,
baseline_args=None,
algo_args=None,
runner_args=None,
sampler_args=None,
save_expert_trajectory=False,

if env_args is None:

{}

env_args

if run_experiment_args is None:

run_experiment_args {}

if sim_args is None:

{}

sim_args

if reward_args is None:

reward_args {}

if spaces_args is None:

spaces_args {}

if policy_args is None:

policy_args {}

if baseline_args is None:

baseline_args {}

if algo_args is None:

algo_args {}

if runner_args is None:
runner_args = {

if sampler_args is None:
sampler_args {}

1}

] = n_parallel

if in run_experiment_args:

n_parallel = run_experiment_args]|]
else:

n_parallel = 1

run_experiment_args|
if in sim_args:

max_path_length
else:
max_path_length 50

sim_args|[]

sim_args|

max_path_length

(continues on next page)

3.5. 5 Creating a Runner

19

AdaptiveStressTestingToolbox, Release 2020.09.01.0

(continued from previous page)

if 'batch_size' in runner_args:

batch_size = runner_args|['batch size']
else:

batch_size = max_path_length * n_parallel

runner_args|['batch _size'] = batch_size
def run_task (snapshot_config, *_):

config = tf.ConfigProto/()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:

with tf.variable_scope ('AST', reuse=tf.AUTO_REUSE) :
with LocalTFRunner (
snapshot_config=snapshot_config,
—local_runner:
sim = ExampleAVSimulator (**sim_args)
reward_function =

spaces = ExampleAVSpaces (**spaces_args)

if 'id' in env_args:
env_args.pop ('id")

max_cpus=4,

sess=sess) as,_

ExampleAVReward (*x*xreward_args)

env = TfEnv (normalize (ASTEnv (simulator=sim,
reward_function=reward_function,
spaces=spaces,
**env_args
)))
policy = GaussianLSTMPolicy (env_spec=env.spec, **policy_args)
baseline = LinearFeatureBaseline (env_spec=env.spec, **baseline_
—args)
optimizer = ConjugateGradientOptimizer
optimizer_args = {'hvp_approach': FiniteDifferenceHvp (base_eps=le—
—5)}
algo = PPO(env_spec=env.spec,
policy=policy,
baseline=baseline,
optimizer=optimizer,
optimizer_args=optimizer_args,
**algo_args)
sampler_cls = ASTVectorizedSampler
sampler_args['sim'] = sim
sampler_args|'reward function'] = reward_function
local_runner.setup (
algo=algo,
env=env,
sampler_cls=sampler_cls,
sampler_args=sampler_args)
(continues on next page)
20 Chapter 3. Tutorial

AdaptiveStressTestingToolbox, Release 2020.09.01.0

(continued from previous page)

local_runner.train (**runner_args)
('"done!")

run_experiment (
run_task,
**xrun_experiment_args,

3.5.3 5.3 Running the Experiment

Now create a file named example_batch_runner.py. While example_runner.py gave us a runner tem-
plate, the batch runner will be where we specify the actual arguments that define our experiment set-up. By dividing
the files in this way, it makes it much easier to set-up and run many different experiment specifications at once.

import pickle

from examples.AV.example runner_drl_ av import runner as drl_runner
if _ name_ == '_ _main__ ':
max_path_length = 50

s_0 = (0.0, -4.0, 1.0, 11.17, =35.0]

base_log_dir = './data'

run_experiment_args =

runner_args =

env_args = {'id': v1',
'blact
'open ole
'fixed init_state': True,
's_0" s_0,
}

sim_args = {'blackbc sim_state': True,
'open_loor False,
'fixed initial state': True,
'max_path length': max_path_length

}

(continues on next page)

3.5. 5 Creating a Runner 21

AdaptiveStressTestingToolbox, Release 2020.09.01.0

(continued from previous page)

reward_args = {'use heuristic': True}

]
—~—
-~

spaces_args

drl_policy_args = {'name': 'lstm policy',

drl_baseline_args = {}

drl_algo_args = {'max_path_ length': max_path_length,

'

discount': 0.99,
'lr_clip_range': 1.0,
'max_kl_step': 1.0,

exp_log_dir = base_log_dir
lir"'] = exp_log_dir +

= 'drl’

run_experiment_args['lo

run_experiment_args|['exp

drl_runner (
env_args=env_args,
run_experiment_args=run_experiment_args,
sim_args=sim_args,
reward_args=reward_args,
spaces_args=spaces_args,
policy_args=drl_policy_args,
baseline_args=drl_baseline_args,
algo_args=drl_algo_args,
runner_args=runner_args,

3.6 6 Running the Example

This section explains how to run the program, and what the results should look like. Double check that all of the files
created earlier in the tutorial are correct (a correct version of each is already included in the repository). Also check
that the conda environment is activated, and that garage has been added to your PYTHONPATH, as explained in the

installation guide.

3.6.1 6.1 Running from the Command Line

Since everything has been configured already in the runner file, running the example is easy. Use the code below in

the command line to execute the example program from the top-level directory:

22

Chapter 3. Tutorial

AdaptiveStressTestingToolbox, Release 2020.09.01.0

mkdir data
python example_batch_runner.py

Here we are creating a new directory for the output, and then running the batch runner we created above (see 5.3
Running the Experiment). The program should run for 101 iterations, unless you have changed it. This may take some

time!

3.6.2 6.2 Example Output

As you run the program, rllab will output optimization updates to the terminal. When the method runs iteration 100,
you should see something that looks like this:

PolicyExecTime

EnvExecTime

ProcessExecTime

Iteration
AverageDiscountedReturn -
AverageReturn -1
ExplainedVariance

NumTrajs

Entropy

Perplexity 3
StdReturn 4
MaxReturn -
MinReturn =24
LossBefore

LossAfter

MeanKLBefore

MeanKL

dLoss

Time

ItrTime

.138965
.471907
.0285957

273
22

.136119

.22841

86
98
079

.66416e-05
.0234421
.0725254
.0915881
.0233855

771

.16877

If everything works right, the max return in the last several iterations should be around -100. If you got particularly
lucky, the average return may be close to that as well. For your own projects, these numbers may be very different,

depending on your reward function.

3.6. 6 Running the Example

23

AdaptiveStressTestingToolbox, Release 2020.09.01.0

24 Chapter 3. Tutorial

CHAPTER 4

Installation

At the command line:

pip install ast-toolbox

You can also install the in-development version with:

pip install git+ssh://git@https://github.com/sisl/AdaptiveStressTestingToolbox.
—git@master

Using the Go-Explore work requires having a Berkely DB installation findable on your system. If you are on Linux:

sudo apt—-get update
sudo apt install libdb-dev python3-bsddb3

If you are on OSX:

brew install berkeley-db
export BERKELEYDB_DIR=$ (brew —-cellar)/berkeley-db/5.3
export YES_TI_HAVE_THE_RIGHT_TO_USE_THIS_BERKELEY_DB_VERSION=1

Once you have the Berkeley DB system dependency met, you can install the toolbox:

pip install ast-toolbox[ge]

25

AdaptiveStressTestingToolbox, Release 2020.09.01.0

26 Chapter 4. Installation

CHAPTER B

Usage

The Adaptive Stress Testing (AST) Toolbox is designed to allow users to use AST to validate their own autonomous
policies within their own simulators. AST formulates the problem of finding the most-likely failure in a system as a
Markov decision process (MDP), which can then be solved with reinforcement learning (RL) techniques. The AST
methodology is shown below:

Environment
Actions Reward Reward

Solver _
Function

Likelihood T

Simulator S

Event

Fig. 1: The Adaptive Stress Testing methodology.

In AST the simulator, which contains the system under test (SUT) is treated as a black-box. The solver tried to force
failures in the SUT by controlling the simulation through the environment actions. After a simulation rollout, the
solver receives a reward, calculated by the reward function, that is dependent on if a failure occurred and how likely
the trajectory was. The solver uses the reward during optimization, allowing it to learn to cause likelier failures. This
methodology leads to the following Toolbox framework:

The ASTEnv is the core of the toolbox. Using the provided wrappers, the ASTEnv turns a user’s simulator into a gym
environment, which can then be solved using existing reinforcement learning software. In order for this to work, a user

27

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Sof RLAlgorithm
Olver Policy

step(),
reset (),
etc.

ASTEnv
ASTSpaces

step(),
reset (),
etc.

getReward ()

getRewardInfo () Reward

Function

St

ASTSimulator ASTReward

Fig. 2: The AST Toolbox framework architecture.

28 Chapter 5. Usage

AdaptiveStressTestingToolbox, Release 2020.09.01.0

must define their state and action spaces as an ASTSpaces class, define their reward function as an ASTReward class,
and provide the ASTEnv control of the simulator through the ASTSimulator class. Solvers are built on the Garage
framework.

We have created a rutorial to show users how to use the Toolbox to validate an autonomous policy.

29

AdaptiveStressTestingToolbox, Release 2020.09.01.0

30 Chapter 5. Usage

CHAPTER O

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

6.1 Bug reports

When reporting a bug please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

6.2 Documentation improvements

AdaptiveStressTestingToolbox could always use more documentation, whether as part of the official Adap-
tiveStressTestingToolbox docs, in docstrings, or even on the web in blog posts, articles, and such.

6.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/sisl/AdaptiveStressTestingToolbox/issues.
If you are proposing a feature:

» Explain in detail how it would work.

* Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that code contributions are welcome :)

31

https://github.com/sisl/AdaptiveStressTestingToolbox/issues
https://github.com/sisl/AdaptiveStressTestingToolbox/issues

AdaptiveStressTestingToolbox, Release 2020.09.01.0

6.4 Development

To set up AdaptiveStressTestingToolbox for local development:

1.

Fork AdaptiveStressTestingToolbox (look for the “Fork™ button).

2. Clone your fork locally:

’git clone git@https://github.com:sisl/AdaptiveStressTestingToolbox.git

3. Follow the Git Installation

3. Create a branch for local development:

’git checkout =-b name-of-your-bugfix—or-feature

Now you can make your changes locally.

When you’re done making changes run all the checks and docs builder with tox. See the Testing and Document-
ing sections for more details.

Commit your changes and push your branch to GitHub:

git add .
git commit -m
git push origin name-of-your-bugfix—or-feature

Submit a pull request through the GitHub website.

6.4.1 Testing

We use Travis+Tox to test the Toolbox, and your PR will not be approved if the tests fail, or if the code coverage would
drop too low. To avoid this, use tox to test on your local machine.

First, make sure you have all the testig dependencies:

’pip install -r ci/requirements.txt

From the main folder, you can run all tests with verbose output with the following command:

’tox -V

If you only want to check one of the Tox test environments, you can specify which one to run:

’tox -v —e [environment_name]

There are 5 tox environments that are run during the full test:

1.
2.

clean - Cleans unneeded files from previous tests/development to prepare for testing.

check - Enforces code formatting. Checks are run using the check-manifest, flake8, and isort packages. You
can run the check-autofix tox environment beforehand to fix most issues.

docs - Builds and checks the documentation.
py36-cover - Runs the code tests using pytest and codecov.

report - Reports the code coverage of the previous tests.

32

Chapter 6. Contributing

https://github.com/sisl/AdaptiveStressTestingToolbox
https://tox.readthedocs.io/en/latest/install.html

AdaptiveStressTestingToolbox, Release 2020.09.01.0

6.4.2 Documentation

The primary form of documentation for the Toolbox is numpy-style docstrings within the code. We use these to
automatically generate online documentation. If you are changing or adding files, make sure the docstrings are up-to-
date.

First, make sure you have the documentation dependencies:

pip install -r docs/requirements.txt

Some docstring guidelines:
* Make the descriptions as explanatory as possible.
* If the parameter has a default value, indicate this by adding “optional” to the type

* If the type of a parameter is a non-python class (for example, a class from Garage or from elsewhere in the
Toolbox), make the type link to that class’s documentation. You can do this using intersphinx.

For example, to link to a garage class, we first added:

’ | , None)

to the intersphinx_mapping settings in docs/source/conf.py. We can then link to a class with the following
syntax:

’:domain:

For example, for the garage.experiment.L.ocalRunner class, we would link using:

’:py:class:‘garage.experiment.LocalRunner <garage:garage.experiment .LocalRunner>"

Note that some links will use a different domains . The correct domains and locations can be a bit tricky to find.
I recommend using the sphobjinv package . For example, we could have run the following command from the
terminal to find the correct link syntax:

sphobjinv suggest =-siu https://garage.readthedocs.io/en/v2019.10.1/objects.inv,,
—LocalRunner

Once you have updated all of the docstrings, run the following commands from the docs folder to update the docu-
mentation source and generate a local HTML version for inspection:

sphinx—apidoc -o ./source/_apidoc ../src/ast_toolbox —-eMf
make clean
make html

6.4.3 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.
For merging, you should:
1. Include passing tests (run t ox)'.

2. Update documentation when there’s new API, functionality etc.

! If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.
It will be slower though ...

6.4. Development 33

https://numpy.org/doc/stable/docs/howto_document.html
https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#the-python-domain
https://github.com/bskinn/sphobjinv
https://travis-ci.org/sisl/AdaptiveStressTestingToolbox/pull_requests

AdaptiveStressTestingToolbox, Release 2020.09.01.0

3. Add a note to CHANGELOG . rst about the changes.

4. Add yourself to AUTHORS . rst.

34 Chapter 6. Contributing

CHAPTER /

Authors

 Stanford Intelligent Systems Laboratory - http://sisl.stanford.edu/

35

http://sisl.stanford.edu/

AdaptiveStressTestingToolbox, Release 2020.09.01.0

36 Chapter 7. Authors

CHAPTER 8

Changelog

8.1 2020.06.01.dev1 (2020-05-17)

* First release on PyPL

8.2 2020.09.01.dev1 (2020-09-01)

* Update documentation.

* Added docstrings and full apidocs.

* Fix for Backward Algorithm.

 Separate the toy AV simulator from the AST wrapper.

* Change AST environments to save the cloned sim state from pre-action, not post-action.
* Add travis deployment to PyPIL

* Removal of unsupported files.

» Expanded codecov to 90+%.

37

AdaptiveStressTestingToolbox, Release 2020.09.01.0

38 Chapter 8. Changelog

CHAPTER 9

ast_toolbox

9.1 ast_toolbox package

AST-Toolbox Base

ast_toolbox.register (id, entry_point, force=True, **kwargs)

9.1.1 Subpackages

ast_toolbox.algos package

Algorithms for solving AST formulated RL problems.

class ast_toolbox.algos.GA (top_paths=None, n_itr=2, batch_size=500, step_size=0.01,
step_size_anneal=1.0, pop_size=5, truncation_size=2, keep_best=1,

f_F="mean’, log_interval=4000, init_step=1.0, **kwargs)
Bases: garage.tf.algos.batch_polopt.BatchPolopt

Deep Genetic Algorithm from Such et al. [1]_.
Parameters

* top_paths (ast_toolbox.mcts.BoundedPriorityQueues, optional) — The
bounded priority queue to store top-rewarded trajectories.

* step_size (float, optional) — Standard deviation for each mutation.

* step_size_anneal (float, optional) — The linear annealing rate of step_size after each itera-
tion.

* pop_size (int, optional) — The population size

* truncation_size (int, optional) — The number of top-performed individuals that are chosen
as parents.

39

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* keep_best (int, optional) — The number of top-performed individuals that remain unchanged
for next generation.

» f F (string, optional) — The method used to calculate fitness: ‘mean’ for the average return,
‘max’ for the max return.

* log_interval (int, optional) — The log interval in terms of environment calls.

* kwargs — Keyword arguments passed to garage.tf.algos.BatchPolopt.

References
alternative for training deep neural networks for reinforcement learning.” arXiv:1712.06567 (2017).
extra_recording (itr)

Record extra training statistics per-iteration.

Parameters itr (int) — The iteration number.

get_fitness (itr, all_paths)
Calculate the fitness of the collexted paths.

Parameters

e itr (int) — The iteration number.

« all_paths (list/dict]) — The collected paths from the sampler.
Returns fitness (/ist[float]) — The list of fitness of each individual.

get_itr_snapshot (itr, samples_data)
Get the snapshot of the current population.

Parameters

e itr (int) — The iteration number.

» samples_data (dicr) — The processed data samples.
Returns snaposhot (dict) — The training snapshot.

init_opt ()
Initiate trainer internal tensorflow operations.

initial ()
Initiate trainer internal parameters.

mutation (itr, new_seeds, new_magnitudes, all_paths)
Generate new random seeds and magnitudes for the next generation.

The first self.keep_best seeds are set to no-mutation value (0).
Parameters
e itr (int) — The iteration number.
* new_seeds (numpy . ndarry) — The original seeds.
e new_magnitudes (numpy . ndarry) — The original magnitudes.
« all_paths (list/dict]) — The collected paths from the sampler.
Returns

* new_seeds (numpy .ndarry) — The new seeds.

40 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.tf.algos.html

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* new_magnitudes (numpy . ndarry) — The new magnitudes.

obtain_samples (ifr, runner)
Collect rollout samples using the current policy paramter.

Parameters
e itr (int) — The iteration number.

* runner (garage.experiment.LocalRunner)— LocalRunner is passed to give
algorithm the access to runner.obtain_samples (), which collects rollout paths
from the sampler.

Returns paths (list/dict]) — The collected paths from the sampler.

optimize_policy (itr, all_paths)
Update the population represented by self.seeds and self.parents.

Parameters
e itr (int) — The iteration number.
« all_paths (list/dict]) — The collected paths from the sampler.

process_samples (itr, paths)
Return processed sample data based on the collected paths.

Parameters
e itr (int) — The iteration number.
* paths (list/dict]) — The collected paths from the sampler.

Returns samples_data (dict) — Processed sample data with same trajectory length (padded with
0)

record_tabular (itr)
Record training performace per-iteration.

Parameters itr (int) — The iteration number.

select_parents (fitness)
Select the individuals to be the parents of the next generation.

Parameters fitness (/ist[float]) — The list of fitness of each individual.

set_params (itr, p)
Set the current policy paramter to the specified iteration and individual.

Parameters
e itr (int) — The iteration number.
* p (int) — The individual index.

train (runner)
Start training.

Parameters runner (garage.experiment .LocalRunner)— LocalRunner is passed
to give algorithm the access to runner . step_epochs (), which provides services such
as snapshotting and sampler control.

class ast_toolbox.algos.GASM (step_size=0.01, **kwargs)
Bases: ast_toolbox.algos.ga.GA

Deep Genetic Algorithm [1]_ with Safe Mutation [2]_.

9.1. ast_toolbox package 41

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters
* step_size (float, optional) — The constraint on the KL divergence of each mutation.

» kwargs — Keyword arguments passed to ast_toolbox.algos.ga. GA.

References
training deep neural networks for reinforcement learning.”” arXiv preprint arXiv:1712.06567 (2017).
data2inputs (samples_data)
Transfer the processed data samples to training inputs
Parameters samples_data (dict) — The processed data samples
Returns all_input_values (fuple) — The input used in training

extra_recording (itr)
Record extra training statistics per-iteration.

Parameters itr (inf) — The iteration number.

init_opt ()
Initiate trainer internal tensorflow operations.

mutation (itr, new_seeds, new_magnitudes, all_paths)
Generate new random seeds and magnitudes for the next generation.

The first self.keep_best seeds are set to no-mutation value (0).
Parameters
e itr (int) — The iteration number.
* new_seeds (numpy . ndarry) — The original seeds.
¢ new_magnitudes (numpy . ndarry) — The original magnitudes.
« all_paths (list/dict]) — The collected paths from the sampler.
Returns
¢ new_seeds (numpy .ndarry) — The new seeds.
¢ new_magnitudes (numpy . ndarry) — The new magnitudes.

class ast_toolbox.algos.MCTS (env, max_path_length, ec, n_itr, k, alpha, clear_nodes,
log_interval, top_paths, log_dir, gamma=1.0, stress_test_mode=2,
log_tabular=True, plot_tree=False, plot_path=None,

plot_format="png’)
Bases: object

Monte Carlo Tress Search (MCTS) with double progressive widening (DPW) [1]_ using the env’s action space
as its action space.

Parameters

e env (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv.) — The
environment.

* max_path_length (inf) — The maximum search depth.

* ec (float) — The exploration constant used in UCT equation.

42 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* n_itr (int) — The iteration number, the total numeber of environment call is approximately
n_itr*max_path_length*max_path_length.

k (float) — The constraint parameter used in DPW: IN(s,a)l<=kN(s)"alpha.
* alpha (floar) — The constraint parameter used in DPW: IN(s,a)l<=kN(s)"alpha.

* clear_nodes (bool) — Whether to clear redundant nodes in tree. Set it to True for saving
memoray. Set it to False to better tree plotting.

* log_interval (int) — The log interval in terms of environment calls.

* top_paths (ast_toolbox.mcts.BoundedPriorityQueues, optional) — The
bounded priority queue to store top-rewarded trajectories.

» gamma (float, optional) — The discount factor.

* stress_test_mode (int, optional) — The mode of the tree search. 1 for single tree. 2 for
multiple trees.

* log_tabular (bool, optional) — Whether to log the training statistics into a tabular file.
* plot_tree (bool, optional) — Whether to plot the resulting searching tree.
* plot_path (str, optional) — The storing path for the tree plot.

* plot_format (str; optional) — The storing format for the tree plot

References
init ()
Initiate AST internal parameters

train (runner)
Start training.

Parameters runner (garage.experiment .LocalRunner)— LocalRunner is passed
to give algorithm the access to runner.step_epochs (), which provides services such
as snapshotting and sampler control.

class ast_toolbox.algos.MCTSBV (M=10, **kwargs)
Bases: ast_toolbox.algos.mcts.MCTS

Monte Carlo Tress Search (MCTS) with double progressive widening (DPW) [1]_ using Blind Value search
from Couetoux et al. [2]_.

Parameters
* M (int, optional) — The number of randon decisions generated for the action pool.

» kwargs — Keyword arguments passed to ast_toolbox.algos.mcts. MCTS.

References
init ()
Initiate AST internal parameters

class ast_toolbox.algos.MCTSRS (seed=0, rsg_length=1, **kwargs)
Bases: ast_toolbox.algos.mcts.MCTS

Monte Carlo Tress Search (MCTS) with double progressive widening (DPW) [1]_ using the random seeds as its
action space.

9.1. ast_toolbox package 43

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters
* seed (int, optional) — The seed used to generate the initial random seed generator.

* rsg_length (int, optional) — The length of the state of the random seed generator. Set it to
higher values for extreme large problems.

References
init ()
Initiate AST internal parameters

class ast_toolbox.algos.GoExplore (db_filename, max_db_size, env, env_spec, policy, base-
line, save_paths_gap=0, save_paths_path=None, over-

write_db=True, use_score_weight=True, **kwargs)
Bases: garage.tf.algos.batch_polopt.BatchPolopt

Implementation of the Go-Explore[1]_ algorithm that is compatible with AST[2]_. :Parameters: * db_filename
(str) — The base path and name for the database files. The CellPool saves a [filename]_pool.dat and a [file-
name]_meta.dat.

* max_db_size (inf) — Maximum allowable size (in GB) of the CellPool database. Algorithm will immedi-
ately stop and exit if this size is exceeded.

e env (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv)— The environment.
* env_spec (garage.envs.EnvSpec) — Environment specification.

e policy (garage.tf.policies.Policy)— The policy.

¢ baseline (garage.np.baselines.Baseline)— The baseline.

» save_paths_gap (int, optional) — How many epochs to skip between saving out full paths. Set to / to save
every epoch. Set to 0 to disable saving.

» save_paths_path (st5, optional) — Path to the directory where paths should be saved. Set to None to disable
saving.

» overwrite_db (bool, optional) — Indicates if an existing database should be overwritten if found.
» use_score_weight (bool) — Whether or not to scale the cell’s fitness by a function of the cell’s score

» kwargs — Keyword arguments passed to garage.tf.algos.BatchPolopt

References
downsample (0bs, step=None)
Create a downsampled approximation of the observed simulation state.
Parameters
* obs (array_like) — The observed simulation state.
* step (int, optional) — The current iteration number
Returns array_like — The downsampled approximation of the observed simulation state.

get_itr_ snapshot (itr)
Returns all the data that should be saved in the snapshot for this iteration.

Parameters itr (int) — The current epoch number.

44 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.html#garage.envs.EnvSpec
https://garage.readthedocs.io/en/latest/_autoapi/garage/tf/policies/index.html#garage.tf.policies.Policy
https://garage.readthedocs.io/en/latest/_autoapi/garage/np/baselines/index.html#garage.np.baselines.Baseline
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.tf.algos.batch_polopt.html

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns dict — A dict containing the current iteration number, the current policy, and the current
baseline.

init_opt ()
Initialize the optimization procedure. If using tensorflow, this may include declaring all the variables and
compiling functions

optimize_policy (itr, samples_data)
Optimize the policy using the samples.

Parameters
e itr (int) — The current epoch number.
» samples_data (dict) — The data from the sampled rollouts.

train (runner)
Obtain samplers and start actual training for each epoch.

Parameters runner (garage.experiment.LocalRunner)— LocalRunner is passed
to give algorithm the access to runner. step_epochs (), which provides services such
as snapshotting and sampler control.

Returns last_return (ast_toolbox.algos.go_explore.Cell)— The highest scoring
cell found so far

train_once (itr, paths)
Perform one step of policy optimization given one batch of samples.

Parameters
e itr (int) — Iteration number.
« paths (list[dict]) — A list of collected paths.

Returns best_cell (ast_toolbox.algos.go_explore.Cell)—Thehighestscoring cell
found so far

class ast_toolbox.algos.BackwardAlgorithm (env, policy, expert_trajectory,
epochs_per_step=10, max_epochs=None,
skip_until_step=0, max_path_length=500,
**kwargs)

Bases: garage.tf.algos.ppo.PPO
Backward Algorithm from Salimans and Chen [1]_.
Parameters

e env (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv) — The
environment.

* policy (garage.tf.policies.Policy)— The policy.

* expert_trajectory (array_like[dict]) — The expert trajectory, an array_like where each
member represents a timestep in a trajectory. The array_like should be 1-D and in chrono-
logical order. Each member of the array_like is a dictionary with the following keys:

state: The simulator state at that timestep (pre-action).

reward: The reward at that timestep (post-action).

observation: The simulation observation at that timestep (post-action).

action: The action taken at that timestep.

9.1. ast_toolbox package 45

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner
https://garage.readthedocs.io/en/latest/_autoapi/garage/tf/algos/ppo/index.html#garage.tf.algos.ppo.PPO
https://garage.readthedocs.io/en/latest/_autoapi/garage/tf/policies/index.html#garage.tf.policies.Policy

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* epochs_per_step (int, optional) — Maximum number of epochs to run per step of the trajec-
tory.

* max_epochs (int, optional) — Maximum number of total epochs to run. If not set, defaults
to epochs_per_step times the number of steps in the expert_trajectory.

* skip_until_step (int, optional) — Skip training for a certain number of steps at the start,
counted backwards from the end of the trajectory. For example, if this is set to 3 for an
expert_trajectory of length 10, training will start from step 7.

* max_path_length (int, optional) — Maximum length of a single rollout.

» kwargs — Keyword arguments passed to garage.tf.algos.PPO

References

get_next_epoch (runner)
Wrapper of garage’s runner.step_epochs () generator to handle initialization to correct trajectory
state

Parameters runner (garage.experiment .LocalRunner) — LocalRunner is passed
to give algorithm the access to runner.step_epochs (), which provides services such
as snapshotting and sampler control.

Yields
 runner.step_itr (inf) — The current epoch number.

¢ runner.obtain_samples(runner.step_itr) (/ist/dict]) — A list of sampled rollouts for the
current epoch

set_env_to_expert_trajectory_ step ()
Updates the algorithm to use the data from expert_trajectory up to the current step.

train (runner)
Obtain samplers and start actual training for each epoch.

Parameters runner (garage.experiment.LocalRunner) — LocalRunner is passed
to give algorithm the access to runner. step_epochs (), which provides services such
as snapshotting and sampler control.

Returns full_paths (array_like) — A list of the path data from each epoch.

train_once (itr, paths)
Perform one step of policy optimization given one batch of samples.

Parameters

e itr (int) — Iteration number.

« paths (list/dict]) — A list of collected paths.
Returns paths (list/dict]) — A list of processed paths

Submodules
ast_toolbox.algos.backward_algorithm module

Backward Algorithm from Salimans and Chen.

46 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.tf.algos.html
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.local_runner.html#garage.experiment.local_runner.LocalRunner.step_epochs
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner
https://arxiv.org/abs/1812.03381

AdaptiveStressTestingToolbox, Release 2020.09.01.0

class ast_toolbox.algos.backward_algorithm.BackwardAlgorithm (env, policy, ex-
pert_trajectory,
epochs_per_step=10,
max_epochs=None,
skip_until_step=0,
max_path_length=500,

**kwargs)
Bases: garage.tf.algos.ppo.PPO

Backward Algorithm from Salimans and Chen'.
Parameters

e env (ast_toolbox.envs.go_explore _ast_env.GoExploreASTEnv) — The
environment.

* policy (garage.tf.policies.Policy)— The policy.

* expert_trajectory (array_like[dict]) — The expert trajectory, an array_like where each
member represents a timestep in a trajectory. The array_like should be 1-D and in chrono-
logical order. Each member of the array_like is a dictionary with the following keys:

state: The simulator state at that timestep (pre-action).

reward: The reward at that timestep (post-action).

observation: The simulation observation at that timestep (post-action).
— action: The action taken at that timestep.

* epochs_per_step (int, optional) — Maximum number of epochs to run per step of the trajec-
tory.

* max_epochs (int, optional) — Maximum number of total epochs to run. If not set, defaults
to epochs_per_step times the number of steps in the expert_trajectory.

* skip_until_step (int, optional) — Skip training for a certain number of steps at the start,
counted backwards from the end of the trajectory. For example, if this is set to 3 for an
expert_trajectory of length 10, training will start from step 7.

* max_path_length (int, optional) — Maximum length of a single rollout.

* kwargs — Keyword arguments passed to garage.tf.algos.PPO

References

get_next_epoch (runner)
Wrapper of garage’s runner.step_epochs () generator to handle initialization to correct trajectory
state

Parameters runner (garage.experiment.LocalRunner)— LocalRunner is passed
to give algorithm the access to runner. step_epochs (), which provides services such
as snapshotting and sampler control.

Yields
* runner.step_itr (inf) — The current epoch number.

* runner.obtain_samples(runner.step_itr) (list/dict]) — A list of sampled rollouts for the
current epoch

! Salimans, Tim, and Richard Chen. “Learning Montezuma’s Revenge from a Single Demonstration.” arXiv preprint arXiv:1812.03381 (2018).
https://arxiv.org/abs/1812.03381

9.1. ast_toolbox package 47

https://garage.readthedocs.io/en/latest/_autoapi/garage/tf/algos/ppo/index.html#garage.tf.algos.ppo.PPO
https://garage.readthedocs.io/en/latest/_autoapi/garage/tf/policies/index.html#garage.tf.policies.Policy
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.tf.algos.html
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.local_runner.html#garage.experiment.local_runner.LocalRunner.step_epochs
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner
https://arxiv.org/abs/1812.03381

AdaptiveStressTestingToolbox, Release 2020.09.01.0

set_env_to_expert_trajectory_step()
Updates the algorithm to use the data from expert_trajectory up to the current step.

train (runner)
Obtain samplers and start actual training for each epoch.

Parameters runner (garage.experiment.LocalRunner)— LocalRunner is passed
to give algorithm the access to runner. step_epochs (), which provides services such
as snapshotting and sampler control.

Returns full_paths (array_like) — A list of the path data from each epoch.

train_once (itr, paths)
Perform one step of policy optimization given one batch of samples.

Parameters

e itr (int) — Iteration number.

« paths (list/dict]) — A list of collected paths.
Returns paths (list/dict]) — A list of processed paths

ast_toolbox.algos.ga module

class ast_toolbox.algos.ga.GA (top_paths=None, n_itr=2, batch_size=500, step_size=0.01,

step_size_anneal=1.0, pop_size=5, truncation_size=2,
keep_best=1, [_F="mean’, log_interval=4000, init_step=1.0,
**kwargs)

Bases: garage.tf.algos.batch_polopt.BatchPolopt
Deep Genetic Algorithm from Such et al.'.
Parameters

* top_paths (ast_toolbox.mcts.BoundedPriorityQueues, optional) — The
bounded priority queue to store top-rewarded trajectories.

* step_size (float, optional) — Standard deviation for each mutation.

* step_size_anneal (float, optional) — The linear annealing rate of step_size after each itera-
tion.

* pop_size (int, optional) — The population size

* truncation_size (int, optional) — The number of top-performed individuals that are chosen
as parents.

 keep_best (int, optional) — The number of top-performed individuals that remain unchanged
for next generation.

» f F (string, optional) — The method used to calculate fitness: ‘mean’ for the average return,
‘max’ for the max return.

* log_interval (int, optional) — The log interval in terms of environment calls.

» kwargs — Keyword arguments passed to garage.tf.algos.BatchPolopt.

! Such, Felipe Petroski, et al. “Deep neuroevolution: Genetic algorithms are a competitive

48 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.tf.algos.html

AdaptiveStressTestingToolbox, Release 2020.09.01.0

References

alternative for training deep neural networks for reinforcement learning.” arXiv:1712.06567 (2017).

extra_recording (itr)
Record extra training statistics per-iteration.

Parameters itr (int) — The iteration number.

get_fitness (itr, all_paths)
Calculate the fitness of the collexted paths.

Parameters

e itr (int) — The iteration number.

« all_paths (list/dict]) — The collected paths from the sampler.
Returns fitness (/ist/float]) — The list of fitness of each individual.

get_itr_snapshot (itr, samples_data)
Get the snapshot of the current population.

Parameters

e itr (int) — The iteration number.

» samples_data (dict) — The processed data samples.
Returns snaposhot (dict) — The training snapshot.

init_opt ()
Initiate trainer internal tensorflow operations.

initial()
Initiate trainer internal parameters.

mutation (itr, new_seeds, new_magnitudes, all_paths)
Generate new random seeds and magnitudes for the next generation.

The first self.keep_best seeds are set to no-mutation value (0).
Parameters
e itr (int) — The iteration number.

* new_seeds (numpy . ndarry) — The original seeds.

* new_magnitudes (numpy . ndarry) — The original magnitudes.

« all_paths (list/dict]) — The collected paths from the sampler.
Returns

* new_seeds (numpy .ndarry) — The new seeds.

¢ new_magnitudes (numpy . ndarry) — The new magnitudes.

obtain_samples (itr, runner)
Collect rollout samples using the current policy paramter.

Parameters

e itr (int) — The iteration number.

9.1.

ast_toolbox package

49

AdaptiveStressTestingToolbox, Release 2020.09.01.0

e runner (garage.experiment .LocalRunner)— LocalRunner is passed to give
algorithm the access to runner.obtain_samples (), which collects rollout paths
from the sampler.

Returns paths (list/dict]) — The collected paths from the sampler.

optimize_policy (itr, all_paths)
Update the population represented by self.seeds and self.parents.

Parameters
e itr (int) — The iteration number.
« all_paths (list/dict]) — The collected paths from the sampler.

process_samples (itr, paths)
Return processed sample data based on the collected paths.

Parameters
e itr (int) — The iteration number.
* paths (list/dict]) — The collected paths from the sampler.

Returns samples_data (dict) — Processed sample data with same trajectory length (padded with
0)

record_ tabular (itr)
Record training performace per-iteration.

Parameters itr (int) — The iteration number.

select_parents (fitness)
Select the individuals to be the parents of the next generation.

Parameters fitness (/ist[float]) — The list of fitness of each individual.

set_params (itr, p)
Set the current policy paramter to the specified iteration and individual.

Parameters
e itr (int) — The iteration number.
* p (int) — The individual index.

train (runner)
Start training.

Parameters runner (garage.experiment .LocalRunner)— LocalRunner is passed
to give algorithm the access to runner.step_epochs (), which provides services such
as snapshotting and sampler control.

ast_toolbox.algos.gasm module

class ast_toolbox.algos.gasm.GASM (step_size=0.01, **kwargs)
Bases: ast_toolbox.algos.ga.GA

Deep Genetic Algorithm' with Safe Mutation?.

Parameters

! Such, Felipe Petroski, et al. “Deep neuroevolution: Genetic algorithms are a competitive alternative for
2 Lehman, Joel, et al. “Safe mutations for deep and recurrent neural networks through output gradients.” Proceedings of the Genetic and
Evolutionary Computation Conference. 2018.

50 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* step_size (float, optional) — The constraint on the KL divergence of each mutation.

* kwargs — Keyword arguments passed to ast_toolbox.algos.ga.GA.

References
training deep neural networks for reinforcement learning.”” arXiv preprint arXiv:1712.06567 (2017).
data2inputs (samples_data)
Transfer the processed data samples to training inputs
Parameters samples_data (dict) — The processed data samples
Returns all_input_values (fuple) — The input used in training

extra_recording (itr)
Record extra training statistics per-iteration.

Parameters itr (int) — The iteration number.

init_opt ()
Initiate trainer internal tensorflow operations.

mutation (itr, new_seeds, new_magnitudes, all_paths)
Generate new random seeds and magnitudes for the next generation.

The first self.keep_best seeds are set to no-mutation value (0).
Parameters
e itr (int) — The iteration number.
* new_seeds (numpy . ndarry) — The original seeds.
* new_magnitudes (numpy . ndarry) — The original magnitudes.
« all_paths (list/dict]) — The collected paths from the sampler.
Returns
¢ new_seeds (numpy .ndarry) — The new seeds.

* new_magnitudes (numpy . ndarry) — The new magnitudes.

ast_toolbox.algos.go_explore module

Implementation of the Go-Explore algorithm.

class ast_toolbox.algos.go_explore.Cell (use_score_weight=True)
Bases: object

A representation of a state visited during exploration.

Parameters use_score_weight (bool) — Whether or not to scale the cell’s fitness by a function of
the cell’s score

reset_cached_property (cached_property)
Removes cached properties so they will be recalculated on next access.

Parameters cached_property (str) — The cached_property key to remove from the class dict.

9.1. ast_toolbox package 51

https://arxiv.org/abs/1901.10995

AdaptiveStressTestingToolbox, Release 2020.09.01.0

count_subscores
A function of times_chosen_subscore, times_chosen_since_improved_subscore, and
times_visited_subscore that is used in calculating the cell’s fitness score.

Returns float — The count subscore of the cell.

fitness
The fitness score of the cell. Cells are sampled with probability proportional to their fitness score.

Returns float — The fitness score of the cell.

is_goal
Whether or not the current cell is a goal state.

Returns bool — Is the current cell a goal.

is_root
Checks if the cell is the root of the tree (trajectory length is 0).

Returns bool — Whether the cell is root or not

is_terminal
Whether or not the current cell is a terminal state.

Returns bool —Is the current cell terminal.

reward
The reward obtained in the current cell.

Returns float — The reward.

score
The score obtained in the current cell.

Returns float — The score.

score_weight
A heuristic function basedon the cell’s score, and other values, to bias the rollouts towards high-scoring
areas.

Returns float — The cell’s score_weight

step
How many steps led to the current cell.

Returns int — Length of the trajectory.

times_chosen
How many times the current cell has been chosen to start a rollout.

Returns int — Number of times chosen.

times_chosen_since_improved
How many times the current cell has been chosen to start a rollout since the last time the cell was updated
with an improved score or trajectory.

Returns int — Number of times chosen since last improved.

times_chosen_since_improved_subscore
A function of times_chosen_since_improved that 1is used in calculating the cell’s
times_chosen_since_improved_subscore score.

Returns float — The times_chosen_since_improved_subscore

times_chosen_ subscore
A function of times_chosen that is used in calculating the cell’s times_chosen_subscore score.

52

Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns float — The times_chosen_subscore

times_visited
How many times the current cell has been visited during all rollouts.

Returns int — Number of times visited.

times_visited subscore
A function of _times_visited that is used in calculating the cell’s times_visited_subscore score.

Returns float — The times_visited_subscore

value_approx
The approximate value of the current cell, based on backpropigation of previous rollouts.

Returns float — The value approximation.

class ast_toolbox.algos.go_explore.CellPool (filename=’database’, discount=0.99,

use_score_weight=True)
Bases: object

A hashtree data structure containing and updating all of the cells seen during rollouts.
Parameters

« filename (str, optional) — The base name for the database files. The CellPool saves a [file-
name]_pool.dat and a [filename|]_meta.dat.

* discount (float, optional) — Discount factor used in calculating a cell’s value approximation.

* use_score_weight (bool) — Whether or not to scale a cell’s fitness by a function of the cell’s
score

close_pool (cell_pool_shelf)
Close the database that the CellPool uses to store cells.

Parameters cell_pool_shelf (shelve.Shelf) — A shelve.Shelf wrapping a bsddb3 database.

d_update (cell_pool_shelf, observation, action, trajectory, score, state, parent=None,

is_terminal=False, is_goal=False, reward=-inf, chosen=0)
Runs the update algorithm for the CellPool. The process is: 1. Create a cell from the given data. 2. Check

if the cell already exists in the CellPool. 3. If the cell already exists and our version is better (higher fitness
or shorter trajectory), update the existing cell. 4. If the cell already exists and our version is not better,
end. 5. If the cell does not already exists, add the new cell to the CellPool

Parameters
* cell_pool_shelf (shelve.Shelf) — A shelve.Shelf wrapping a bsddb3 database.
¢ observation (array_like) — The observation seen in the current cell.
e action (array_like) — The action taken in the current cell.
e trajectory (array_like) — The trajectory leading to the current cell.
* score (float) — The score at the current cell.

* state (array_like) — The cloned simulation state at the current cell, used for resetting if
chosen to start a rollout.

* parent (int, optional) — The hash key of the cell immediately preceding the current cell in
the trajectory.

* is_terminal (bool, optional) — Whether the current cell is a terminal state.

* is_goal (bool, optional) — Whether the current cell is a goal state.

9.1. ast_toolbox package 53

https://docs.python.org/3/library/shelve.html#shelve.Shelf
https://docs.python.org/3/library/shelve.html#shelve.Shelf

AdaptiveStressTestingToolbox, Release 2020.09.01.0

e reward (float, optional) — The reward obtained at the current cell.
* chosen (int, optional) — Whether the current cell was chosen to start the rollout.
Returns bool — True if a new cell was added to the CellPool, False otherwise

delete_pool ()
Remove the CellPool files saved on disk.

load (cell_pool_shelf)
Load a CellPool from disk.

Parameters cell_pool_shelf (shelve.Shelf) — A shelve.Shelf wrapping a bsddb3 database.

open_pool (dbname=None, dbtype=<sphinx.ext.autodoc.importer._MockObject object>,

flags=<sphinx.ext.autodoc.importer._MockObject object>, protocol=4, overwrite=False)
Open the database that the CellPool uses to store cells.

Parameters
e dbname (string)

 dbtype (int, optional) — Specifies the type of database to open. Use enumerations provided
by bsddb3.

* flags (int, optional) — Specifies the configuration of the database to open. Use enumera-
tions provided by bsddb3.

* protocol (int, optional) — Specifies the data stream format used by pickle.

 overwrite (bool, optional) — Indicates if an existing database should be overwritten if
found.

Returns
cell_pool_shelf (shelve.Shelf) — A shelve.Shelf wrapping a bsddb3 database.

save ()
Save the CellPool to disk.

sync_and_close_pool (cell_pool_shelf)
Sync and then close the database that the CellPool uses to store cells.

Parameters cell_pool_shelf (shelve.Shelf) — A shelve.Shelf wrapping a bsddb3 database

sync_pool (cell_pool_shelf)
Syncs the pool, ensuring that the database on disk is up-to-date.

Parameters cell_pool_shelf (shelve.Shelf) — A shelve.Shelf wrapping a bsddb3 database.

value_approx_update (value, obs_hash, cell_pool_shelf)
Recursively calculate a value approximation through back-propagation.

Parameters
* value (Value approximation of the previous cell.)
* obs_hash (Hash key of the current cell.)
¢ cell_pool_shelf (shelve.Shelf) — A shelve.Shelf wrapping a bsddb3 database.

meta_filename
The CellPool metadata filename.

Returns str — The CellPool metadata filename.

pool_filename
The CellPool database filename.

54 Chapter 9. ast_toolbox

https://docs.python.org/3/library/shelve.html#shelve.Shelf
https://www.jcea.es/programacion/pybsddb_doc/db.html#open
https://www.jcea.es/programacion/pybsddb_doc/db.html#open
https://docs.python.org/3/library/pickle.html#data-stream-format
https://docs.python.org/3/library/shelve.html#shelve.Shelf
https://docs.python.org/3/library/shelve.html#shelve.Shelf
https://docs.python.org/3/library/shelve.html#shelve.Shelf
https://docs.python.org/3/library/shelve.html#shelve.Shelf

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns str — The CellPool database filename.

class ast_toolbox.algos.go_explore.GoExplore (db_filename, max_db_size, env, env_spec,
policy, baseline, save_paths_gap=0,

save_paths_path=None, over-
write_db=True, use_score_weight=True,
**kwargs)

Bases: garage.tf.algos.batch_polopt.BatchPolopt

Implementation of the Go-Explore[1]_ algorithm that is compatible with AST[2]_. :Parameters: * db_filename
(str) — The base path and name for the database files. The CellPool saves a [filename]_pool.dat and a [file-
name]_meta.dat.

* max_db_size (inf) — Maximum allowable size (in GB) of the CellPool database. Algorithm will immedi-
ately stop and exit if this size is exceeded.

e env (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv)— The environment.
* env_spec (garage.envs.EnvSpec) — Environment specification.

e policy (garage.tf.policies.Policy)— The policy.

¢ baseline (garage.np.baselines.Baseline)— The baseline.

 save_paths_gap (int, optional) — How many epochs to skip between saving out full paths. Set to / to save
every epoch. Set to O to disable saving.

» save_paths_path (st;, optional) — Path to the directory where paths should be saved. Set to None to disable
saving.

» overwrite_db (bool, optional) — Indicates if an existing database should be overwritten if found.
* use_score_weight (bool) — Whether or not to scale the cell’s fitness by a function of the cell’s score

» kwargs — Keyword arguments passed to garage.tf.algos.BatchPolopt

References
downsample (0bs, step=None)
Create a downsampled approximation of the observed simulation state.
Parameters
* obs (array_like) — The observed simulation state.
* step (int, optional) — The current iteration number
Returns array_like — The downsampled approximation of the observed simulation state.

get_itr_ snapshot (itr)
Returns all the data that should be saved in the snapshot for this iteration.

Parameters itr (int) — The current epoch number.

Returns dict — A dict containing the current iteration number, the current policy, and the current
baseline.

init_opt ()
Initialize the optimization procedure. If using tensorflow, this may include declaring all the variables and
compiling functions

optimize_policy (itr, samples_data)
Optimize the policy using the samples.

9.1. ast_toolbox package 55

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.html#garage.envs.EnvSpec
https://garage.readthedocs.io/en/latest/_autoapi/garage/tf/policies/index.html#garage.tf.policies.Policy
https://garage.readthedocs.io/en/latest/_autoapi/garage/np/baselines/index.html#garage.np.baselines.Baseline
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.tf.algos.batch_polopt.html

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters
e itr (int) — The current epoch number.
» samples_data (dict) — The data from the sampled rollouts.

train (runner)
Obtain samplers and start actual training for each epoch.

Parameters runner (garage.experiment .LocalRunner) — LocalRunner is passed
to give algorithm the access to runner.step_epochs (), which provides services such
as snapshotting and sampler control.

Returns last_return (ast_toolbox.algos.go_explore.Cell)— The highest scoring
cell found so far

train_once (itr, paths)
Perform one step of policy optimization given one batch of samples.

Parameters
e itr (int) — Iteration number.
* paths (list/dict]) — A list of collected paths.

Returns best_cell (ast_toolbox.algos.go_explore.Cell)—The highestscoring cell
found so far

ast_toolbox.algos.mcts module

class ast_toolbox.algos.mcts.MCTS (env, max_path_length, ec, n_itr, k, alpha, clear_nodes,
log_interval, top_paths, log_dir, gamma=1.0,
stress_test_mode=2, log_tabular=True, plot_tree=False,

plot_path=None, plot_format="png’)
Bases: object

Monte Carlo Tress Search (MCTS) with double progressive widening (DPW)' using the env’s action space as
its action space.

Parameters

e env (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv.) — The
environment.

* max_path_length (inf) — The maximum search depth.
* ec (float) — The exploration constant used in UCT equation.

* n_itr (int) — The iteration number, the total numeber of environment call is approximately
n_itr*max_path_length*max_path_length.

* k (float) — The constraint parameter used in DPW: IN(s,a)l<=kN(s)"alpha.
* alpha (floar) — The constraint parameter used in DPW: IN(s,a)l<=kN(s)"alpha.

* clear_nodes (bool) — Whether to clear redundant nodes in tree. Set it to True for saving
memoray. Set it to False to better tree plotting.

* log_interval (int) — The log interval in terms of environment calls.

! Lee, Ritchie, et al. “Adaptive stress testing of airborne collision avoidance systems.” 2015 TEEE/AIAA 34th Digital Avionics Systems Confer-
ence (DASC). IEEE, 2015.

56 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* top_paths (ast_toolbox.mcts.BoundedPriorityQueues, optional) — The
bounded priority queue to store top-rewarded trajectories.

» gamma (float, optional) — The discount factor.

o stress_test_mode (int, optional) — The mode of the tree search. 1 for single tree. 2 for
multiple trees.

* log_tabular (bool, optional) — Whether to log the training statistics into a tabular file.
* plot_tree (bool, optional) — Whether to plot the resulting searching tree.
* plot_path (st optional) — The storing path for the tree plot.

* plot_format (st7; optional) — The storing format for the tree plot

References
init ()
Initiate AST internal parameters

train (runner)
Start training.

Parameters runner (garage.experiment.LocalRunner)— LocalRunner is passed
to give algorithm the access to runner . step_epochs (), which provides services such
as snapshotting and sampler control.

ast_toolbox.algos.mctsbv module

class ast_toolbox.algos.mctsbv.MCTSBV (M=10, **kwargs)
Bases: ast_toolbox.algos.mcts.MCTS

Monte Carlo Tress Search (MCTS) with double progressive widening (DPW)' using Blind Value search from
Couetoux et al.”.

Parameters
* M (int, optional) — The number of randon decisions generated for the action pool.

» kwargs — Keyword arguments passed to ast_toolbox.algos.mcts. MCTS.

References

init ()
Initiate AST internal parameters

ast_toolbox.algos.mctsrs module

class ast_toolbox.algos.mctsrs.MCTSRS (seed=0, rsg_length=1, **kwargs)
Bases: ast_toolbox.algos.mcts.MCTS

! Lee, Ritchie, et al. “Adaptive stress testing of airborne collision avoidance systems.” 2015 IEEE/AIAA 34th Digital Avionics Systems Confer-
ence (DASC). IEEE, 2015.

2 Couetoux, Adrien, Hassen Doghmen, and Olivier Teytaud. “Improving the exploration in upper confidence trees.” International Conference
on Learning and Intelligent Optimization. Springer, Berlin, Heidelberg, 2012.

9.1. ast_toolbox package 57

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.experiment.html#garage.experiment.LocalRunner

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Monte Carlo Tress Search (MCTS) with double progressive widening (DPW)' using the random seeds as its
action space.

Parameters
* seed (int, optional) — The seed used to generate the initial random seed generator.

* rsg_length (int, optional) — The length of the state of the random seed generator. Set it to
higher values for extreme large problems.

References

init ()
Initiate AST internal parameters

ast_toolbox.envs package

Environments for formulating validation as an AST reinforcement learning problem.

class ast_toolbox.envs.GoExploreASTEnv (open_loop=True, blackbox_sim_state=True,

fixed_init_state=False, s_O=None, simulator=None,

reward_function=None, spaces=None)
Bases: gym.core.Env, ast_toolbox.envs.go_explore_ast_env.Parameterized

Gym environment to turn general AST tasks into garage compatible problems with Go-Explore style resets.

Certain algorithms, such as Go-Explore and the Backwards Algorithm, require deterministic resets of the simu-
lator. GoExploreASTEny handles this by cloning simulator states and saving them in a cell structure. The cells
are then stored in a hashed database.

Parameters

* open_loop (bool) — True if the simulation is open-loop, meaning that AST must generate all
actions ahead of time, instead of being able to output an action in sync with the simulator,
getting an observation back before the next action is generated. False to get interactive
control, which requires that blackbox_sim_state is also False.

¢ blackbox_sim_state (bool) — True if the true simulation state can not be observed, in which
case actions and the initial conditions are used as the observation. False if the simulation
state can be observed, in which case it will be used

* fixed_init_state (bool) — True if the initial state is fixed, False to sample the initial state for
each rollout from the observaation space.

* s_0 (array_like) — The initial state for the simulation (ignored if fixed_init_state is False)

» simulator (ast_toolbox.simulators.ASTSimulator)— The simulator wrapper,
inheriting from ast_toolbox.simulators.ASTSimulator.

e reward_function (ast_toolbox.rewards.ASTReward) — The reward function, in-
heriting from ast_toolbox.rewards.ASTReward.

* spaces (ast_toolbox.spaces.ASTSpaces)— The observation and action space def-
initions, inheriting from ast_toolbox.spaces.ASTSpaces.

close ()
Calls the simulator’s close function, if it exists.

! Lee, Ritchie, et al. “Adaptive stress testing of airborne collision avoidance systems.” 2015 IEEE/AIAA 34th Digital Avionics Systems Confer-

ence (DASC). IEEE, 2015.

58

Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns None or object — Returns the output of the simulator’s close function, or None if the
simulator has no close function.

downsample (0bs)
Create a downsampled approximation of the observed simulation state.

Parameters obs (array_like) — The observed simulation state.
Returns array_like — The downsampled approximation of the observed simulation state.

env_reset ()
Resets the state of the environment, returning an initial observation.

Returns observation (array_like) — The initial observation of the space. (Initial reward is as-
sumed to be 0.)

get_cache_list ()
Returns the environment info cache.

Returns dict — A dictionary containing diagnostic and logging information for the environment.

get_first_cell()
Returns a the observation and state of the initial state, to be used for a root cell.

Returns
* obs (array_like) — Agent’s observation of the current environment.

* state (array_like) — The cloned simulation state at the current cell, used for resetting if
chosen to start a rollout.

get_param values (**fags)
Return the values of internal parameters.

Parameters tags (dict[bool]) — For each tag, a parameter is returned if the parameter name
matches the tag’s key

Returns list — A list of parameter values.

get_params_internal (**ags)
Returns the parameters associated with the given tags.

Parameters tags (dict[bool]) — For each tag, a parameter is returned if the parameter name
matches the tag’s key

Returns /ist — List of parameters

log ()
Calls the simulator’s /og function.

render (**kwargs)
Calls the simulator’s render function, if it exists.

Returns None or object — Returns the output of the simulator’s render function, or None if the
simulator has no render function.

reset (**kwargs)
Resets the state of the environment, returning an initial observation.

The reset has 2 modes.

In the “robustify” mode (self.p_robustify_state.value is not None), the simulator resets the environment to
p_robustify_state.value. It then returns the initial condition.

In the “Go-Explore” mode, the environment attempts to sample a cell from the cell pool. If successful, the
simulator is reset to the cell’s state. On an error, the environment is reset to the intial state.

. ast_toolbox package 59

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns observation (array_like) — The initial observation of the space. (Initial reward is as-
sumed to be 0.)

sample (population)
Sample a cell from the cell pool with likelihood proportional to cell fitness.

The sampling is done using Stochastic Acceptance', with inspiration from John B Nelson’s blog [2]_.

The sampler rejects cells until the acceptance criterea is met. If the maximum number of rejections is
exceeded, the sampler then will sample uniformly sample a cell until it finds a cell with fitness > 0. If the
second sampling phase also exceeds the rejection limit, then the function raises an exception.

Parameters population (/ist) — A list containing the population of cells to sample from.
Returns object — The sampled cell.

Raises ValueError — If the maximum number of rejections is exceeded in both the propor-
tional and the uniform sampling phases.

References
Physica A: Statistical Mechanics and its Applications 391.6 (2012): 2193-2196. https://arxiv.org/pdf/1109.
3627.pdf .. [2] https://jbn.github.io/fast_proportional_selection/

set_param_values (param_values, **tags)
Set the values of parameters

Parameters
» param_values (object) — Value to set the parameter to.

* tags (dict[bool]) — For each tag, a parameter is returned if the parameter name matches
the tag’s key

simulate (actions)
Run a full simulation rollout.

Parameters actions (list/array_like]) — A list of array_likes, where each member is the action
taken at that step.

Returns

* int — The step of the trajectory where a collision was found, or -1 if a collision was not
found.

* dict — A dictionary of simulation information for logging and diagnostics.

step (action)
Run one timestep of the environment’s dynamics. When end of episode is reached, reset() should be called
to reset the environment’s internal state.

Parameters action (array_like) — An action provided by the environment.
Returns

garage.envs.base.Step () — A step in the rollout. Contains the following informa-
tion:

* observation (array_like): Agent’s observation of the current environment.
 reward (float): Amount of reward due to the previous action.

* done (bool): Is the current step a terminal or goal state, ending the rollout.

! Lipowski, Adam, and Dorota Lipowska. “Roulette-wheel selection via stochastic acceptance.”

60 Chapter 9. ast_toolbox

https://arxiv.org/pdf/1109.3627.pdf
https://arxiv.org/pdf/1109.3627.pdf
https://jbn.github.io/fast_proportional_selection/
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.base.html#garage.envs.base.Step

AdaptiveStressTestingToolbox, Release 2020.09.01.0

e cache (dict): A dictionary containing other diagnostic information from the current step.
* actions (array_like): The action taken at the current.

* state (array_like): The cloned simulation state at the current cell, used for resetting if
chosen to start a rollout.

¢ is_terminal (bool): Whether or not the current cell is a terminal state.
* is_goal (bool): Whether or not the current cell is a goal state.

action_space
Convenient access to the environment’s action space.

Returns gym.spaces.Space — The action space of the reinforcement learning problem.

observation_space
Convenient access to the environment’s observation space.

Returns
gym.spaces.Space — The observation space of the reinforcement learning problem.

spec
Returns a garage environment specification.

Returns garage.envs.env_spec.EnvSpec — A garage environment specification.

class ast_toolbox.envs.Custom_GoExploreASTEnv (open_loop=True, black-
box_sim_state=True,
fixed_init_state=False, s_0=None,

simulator=None, reward_function=None,

spaces=None)
Bases: ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv

Custom class to change how downsampling works.
Example class of how to overload downsample to make the environment work for different environments.

downsample (0bs, step=None)
Create a downsampled approximation of the observed simulation state.

Parameters
* obs (array_like) — The observed simulation state.
e step (int, optional) — The current iteration number
Returns array_like — The downsampled approximation of the observed simulation state.

class ast_toolbox.envs.ASTEnv (open_loop=True, blackbox_sim_state=True,
fixed_init_state=False, s_0=None, simulator=None, re-

ward_function=None, spaces=None)
Bases: gym.core.Env

Gym environment to turn general AST tasks into garage compatible problems.
Parameters

* open_loop (bool) — True if the simulation is open-loop, meaning that AST must generate all
actions ahead of time, instead of being able to output an action in sync with the simulator,
getting an observation back before the next action is generated. False to get interactive
control, which requires that blackbox_sim_state is also False.

9.1. ast_toolbox package 61

https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.env_spec.html#garage.envs.env_spec.EnvSpec

AdaptiveStressTestingToolbox, Release 2020.09.01.0

¢ blackbox_sim_state (bool) — True if the true simulation state can not be observed, in which
case actions and the initial conditions are used as the observation. False if the simulation
state can be observed, in which case it will be used.

* fixed_init_state (bool) — True if the initial state is fixed, False to sample the initial state for
each rollout from the observaation space.

* s_0 (array_like) — The initial state for the simulation (ignored if fixed_init_state is False)

» simulator (ast_toolbox.simulators.ASTSimulator)— The simulator wrapper,
inheriting from ast_toolbox.simulators.ASTSimulator.

e reward_function (ast_toolbox.rewards.ASTReward) — The reward function, in-
heriting from ast_toolbox.rewards.ASTReward.

* spaces (ast_toolbox.spaces.ASTSpaces)— The observation and action space def-
initions, inheriting from ast_toolbox.spaces.ASTSpaces.

close ()
Calls the simulator’s close function, if it exists.

Returns None or object — Returns the output of the simulator’s close function, or None if the
simulator has no close function.

log ()
Calls the simulator’s log function.

render (**kwargs)
Calls the simulator’s render function, if it exists.

Parameters kwargs — Keyword arguments used in the simulators render function.

Returns None or object — Returns the output of the simulator’s render function, or None if the
simulator has no render function.

reset ()
Resets the state of the environment, returning an initial observation.

Returns observation (array_like) — The initial observation of the space. (Initial reward is as-
sumed to be 0.)

simulate (actions)
Run a full simulation rollout.

Parameters actions (list/array_like]) — A list of array_likes, where each member is the action
taken at that step.

Returns

* int — The step of the trajectory where a collision was found, or -1 if a collision was not
found.

* dict — A dictionary of simulation information for logging and diagnostics.

step (action)
Run one timestep of the environment’s dynamics. When end of episode is reached, reset() should be called
to reset the environment’s internal state.

Parameters action (array_like) — An action provided by the environment.
Returns

garage.envs.base.Step () — A step in the rollout. Contains the following informa-
tion:

62 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.base.html#garage.envs.base.Step

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* observation (array_like): Agent’s observation of the current environment.
 reward (float): Amount of reward due to the previous action.

* done (bool): Is the current step a terminal or goal state, ending the rollout.
* actions (array_like): The action taken at the current.

* state (array_like): The cloned simulation state at the current cell, used for resetting if
chosen to start a rollout.

¢ is_terminal (bool): Whether or not the current cell is a terminal state.
¢ is_goal (bool): Whether or not the current cell is a goal state.

action_space
Convenient access to the environment’s action space.

Returns
gym.spaces.Space — The action space of the reinforcement learning problem.

observation_space
Convenient access to the environment’s observation space.

Returns
gym.spaces.Space — The observation space of the reinforcement learning problem.

spec
Returns a garage environment specification.

Returns garage.envs.env_spec.EnvSpec — A garage environment specification.

Submodules

ast_toolbox.envs.ast_env module

Gym environment to turn general AST tasks into garage compatible problems.

class ast_toolbox.envs.ast_env.ASTEnv (open_loop=True, blackbox_sim_state=True,

fixed_init_state=False, s_0=None, simulator=None,

reward_function=None, spaces=None)
Bases: gym.core.Env

Gym environment to turn general AST tasks into garage compatible problems.
Parameters

* open_loop (bool) — True if the simulation is open-loop, meaning that AST must generate all
actions ahead of time, instead of being able to output an action in sync with the simulator,
getting an observation back before the next action is generated. False to get interactive
control, which requires that blackbox_sim_state is also False.

¢ blackbox_sim_state (bool) — True if the true simulation state can not be observed, in which
case actions and the initial conditions are used as the observation. False if the simulation
state can be observed, in which case it will be used.

* fixed_init_state (bool) — True if the initial state is fixed, False to sample the initial state for
each rollout from the observaation space.

* s_0 (array_like) — The initial state for the simulation (ignored if fixed_init_state is False)

9.1.

ast_toolbox package 63

https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.env_spec.html#garage.envs.env_spec.EnvSpec

AdaptiveStressTestingToolbox, Release 2020.09.01.0

» simulator (ast_toolbox.simulators.ASTSimulator)— The simulator wrapper,
inheriting from ast_toolbox.simulators.ASTSimulator.

e reward_function (ast_toolbox.rewards.ASTReward) — The reward function, in-
heriting from ast_toolbox.rewards.ASTReward.

* spaces (ast_toolbox.spaces.ASTSpaces)— The observation and action space def-
initions, inheriting from ast_toolbox.spaces.ASTSpaces.

close ()
Calls the simulator’s close function, if it exists.

Returns None or object — Returns the output of the simulator’s close function, or None if the
simulator has no close function.

log ()
Calls the simulator’s log function.

render (**kwargs)
Calls the simulator’s render function, if it exists.

Parameters kwargs — Keyword arguments used in the simulators render function.

Returns None or object — Returns the output of the simulator’s render function, or None if the
simulator has no render function.

reset ()
Resets the state of the environment, returning an initial observation.

Returns observation (array_like) — The initial observation of the space. (Initial reward is as-
sumed to be 0.)

simulate (actions)
Run a full simulation rollout.

Parameters actions (list/array_like]) — A list of array_likes, where each member is the action
taken at that step.

Returns

* int — The step of the trajectory where a collision was found, or -1 if a collision was not
found.

e dict — A dictionary of simulation information for logging and diagnostics.

step (action)
Run one timestep of the environment’s dynamics. When end of episode is reached, reset() should be called
to reset the environment’s internal state.

Parameters action (array_like) — An action provided by the environment.
Returns

garage.envs.base.Step () — A step in the rollout. Contains the following informa-
tion:

* observation (array_like): Agent’s observation of the current environment.
* reward (float): Amount of reward due to the previous action.

* done (bool): Is the current step a terminal or goal state, ending the rollout.
* actions (array_like): The action taken at the current.

* state (array_like): The cloned simulation state at the current cell, used for resetting if
chosen to start a rollout.

64 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.base.html#garage.envs.base.Step

AdaptiveStressTestingToolbox, Release 2020.09.01.0

¢ is_terminal (bool): Whether or not the current cell is a terminal state.
* is_goal (bool): Whether or not the current cell is a goal state.

action_space
Convenient access to the environment’s action space.

Returns gym.spaces.Space — The action space of the reinforcement learning problem.

observation_space
Convenient access to the environment’s observation space.

Returns
gym.spaces.Space — The observation space of the reinforcement learning problem.

spec
Returns a garage environment specification.

Returns garage.envs.env_spec.EnvSpec — A garage environment specification.

ast_toolbox.envs.go_explore_ast_env module

Gym environment to turn general AST tasks into garage compatible problems with Go-Explore style resets.

class ast_toolbox.envs.go_explore_ast_env.Custom_GoExploreASTEnv (open_loop=True,
black-
box_sim_state=True,
fixed_init_state=False,
s_0=None,
simula-
tor=None,
re-
ward_function=None,

spaces=None)
Bases: ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv

Custom class to change how downsampling works.
Example class of how to overload downsample to make the environment work for different environments.

downsample (0bs, step=None)
Create a downsampled approximation of the observed simulation state.

Parameters
¢ obs (array_like) — The observed simulation state.
e step (int, optional) — The current iteration number
Returns array_like — The downsampled approximation of the observed simulation state.

class ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv (open_loop=True, black-
box_sim_state=True,
fixed_init_state=False,
s_0=None, sim-
ulator=None, re-
ward_function=None,

spaces=None)
Bases: gym.core.Env, ast_toolbox.envs.go_explore_ast_env.Parameterized

Gym environment to turn general AST tasks into garage compatible problems with Go-Explore style resets.

9.1. ast_toolbox package 65

https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.env_spec.html#garage.envs.env_spec.EnvSpec

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Certain algorithms, such as Go-Explore and the Backwards Algorithm, require deterministic resets of the simu-
lator. GoExploreASTEny handles this by cloning simulator states and saving them in a cell structure. The cells
are then stored in a hashed database.

Parameters

* open_loop (bool) — True if the simulation is open-loop, meaning that AST must generate all
actions ahead of time, instead of being able to output an action in sync with the simulator,
getting an observation back before the next action is generated. False to get interactive
control, which requires that blackbox_sim_state is also False.

¢ blackbox_sim_state (bool) — True if the true simulation state can not be observed, in which
case actions and the initial conditions are used as the observation. False if the simulation
state can be observed, in which case it will be used

* fixed_init_state (bool) — True if the initial state is fixed, False to sample the initial state for
each rollout from the observaation space.

* s_0 (array_like) — The initial state for the simulation (ignored if fixed_init_state is False)

e simulator (ast_toolbox.simulators.ASTSimulator)— The simulator wrapper,
inheriting from ast_toolbox.simulators.ASTSimulator.

e reward_function (ast_toolbox.rewards.ASTReward) — The reward function, in-
heriting from ast_toolbox.rewards.ASTReward.

* spaces (ast_toolbox.spaces.ASTSpaces)— The observation and action space def-
initions, inheriting from ast_toolbox.spaces.ASTSpaces.

close ()
Calls the simulator’s close function, if it exists.

Returns None or object — Returns the output of the simulator’s close function, or None if the
simulator has no close function.

downsample (0bs)
Create a downsampled approximation of the observed simulation state.

Parameters obs (array_like) — The observed simulation state.
Returns array_like — The downsampled approximation of the observed simulation state.

env_reset ()
Resets the state of the environment, returning an initial observation.

Returns observation (array_like) — The initial observation of the space. (Initial reward is as-
sumed to be 0.)

get_cache_list ()
Returns the environment info cache.

Returns dict — A dictionary containing diagnostic and logging information for the environment.

get_first_cell()
Returns a the observation and state of the initial state, to be used for a root cell.

Returns
* obs (array_like) — Agent’s observation of the current environment.

* state (array_like) — The cloned simulation state at the current cell, used for resetting if
chosen to start a rollout.

get_param values (**fags)
Return the values of internal parameters.

66 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters tags (dict[bool]) — For each tag, a parameter is returned if the parameter name
matches the tag’s key

Returns list — A list of parameter values.

get_params_internal (**tags)
Returns the parameters associated with the given tags.

Parameters tags (dict/bool]) — For each tag, a parameter is returned if the parameter name
matches the tag’s key

Returns /ist — List of parameters

log ()
Calls the simulator’s /og function.

render (**kwargs)
Calls the simulator’s render function, if it exists.

Returns None or object — Returns the output of the simulator’s render function, or None if the
simulator has no render function.

reset (**kwargs)
Resets the state of the environment, returning an initial observation.

The reset has 2 modes.

In the “robustify” mode (self.p_robustify_state.value is not None), the simulator resets the environment to
p_robustify_state.value. It then returns the initial condition.

In the “Go-Explore” mode, the environment attempts to sample a cell from the cell pool. If successful, the
simulator is reset to the cell’s state. On an error, the environment is reset to the intial state.

Returns observation (array_like) — The initial observation of the space. (Initial reward is as-
sumed to be 0.)

sample (population)
Sample a cell from the cell pool with likelihood proportional to cell fitness.

The sampling is done using Stochastic Acceptance', with inspiration from John B Nelson’s blog [2]_.

The sampler rejects cells until the acceptance criterea is met. If the maximum number of rejections is
exceeded, the sampler then will sample uniformly sample a cell until it finds a cell with fitness > 0. If the
second sampling phase also exceeds the rejection limit, then the function raises an exception.

Parameters population (/ist) — A list containing the population of cells to sample from.
Returns object — The sampled cell.

Raises ValueError — If the maximum number of rejections is exceeded in both the propor-
tional and the uniform sampling phases.

References
Physica A: Statistical Mechanics and its Applications 391.6 (2012): 2193-2196. https://arxiv.org/pdf/1109.
3627.pdf .. [2] https://jbn.github.io/fast_proportional_selection/

set_param_values (param_values, **tags)
Set the values of parameters

Parameters

! Lipowski, Adam, and Dorota Lipowska. “Roulette-wheel selection via stochastic acceptance.”

9.1. ast_toolbox package 67

https://arxiv.org/pdf/1109.3627.pdf
https://arxiv.org/pdf/1109.3627.pdf
https://jbn.github.io/fast_proportional_selection/

AdaptiveStressTestingToolbox, Release 2020.09.01.0

» param_values (object) — Value to set the parameter to.

* tags (dict[bool]) — For each tag, a parameter is returned if the parameter name matches
the tag’s key

simulate (actions)
Run a full simulation rollout.

Parameters actions (list/array_like]) — A list of array_likes, where each member is the action
taken at that step.

Returns

* int — The step of the trajectory where a collision was found, or -1 if a collision was not
found.

* dict — A dictionary of simulation information for logging and diagnostics.

step (action)
Run one timestep of the environment’s dynamics. When end of episode is reached, reset() should be called
to reset the environment’s internal state.

Parameters action (array_like) — An action provided by the environment.
Returns

garage.envs.base.Step () — A step in the rollout. Contains the following informa-
tion:

* observation (array_like): Agent’s observation of the current environment.

 reward (float): Amount of reward due to the previous action.

¢ done (bool): Is the current step a terminal or goal state, ending the rollout.

e cache (dict): A dictionary containing other diagnostic information from the current step.
* actions (array_like): The action taken at the current.

* state (array_like): The cloned simulation state at the current cell, used for resetting if
chosen to start a rollout.

e is_terminal (bool): Whether or not the current cell is a terminal state.
* is_goal (bool): Whether or not the current cell is a goal state.

action_space
Convenient access to the environment’s action space.

Returns gym.spaces.Space — The action space of the reinforcement learning problem.

observation_space
Convenient access to the environment’s observation space.

Returns
gym.spaces.Space — The observation space of the reinforcement learning problem.

spec
Returns a garage environment specification.

Returns garage.envs.env_spec.EnvSpec — A garage environment specification.

class ast_toolbox.envs.go_explore_ast_env.GoExploreParameter (name, value)
Bases: object

68 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.base.html#garage.envs.base.Step
https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.env_spec.html#garage.envs.env_spec.EnvSpec

AdaptiveStressTestingToolbox, Release 2020.09.01.0

A wrapper for variables that will be set as parameters in the GoExploreASTEnv :Parameters: * name (str) —
Name of the parameter.

* value (value) — Value of the parameter.

get_value (**kwargs)
Return the value of the parameter.

Parameters kwargs — Extra keyword arguments (Not currently used).
Returns object — The value of the parameter.

set_value (value)
Set the value of the parameter

Parameters value (object) — What to set the parameters value to.

class ast_toolbox.envs.go_explore_ast_env.Parameterized
Bases: object

A slimmed down version of the (deprecated) Parameterized class from garage for passing parameters to envi-
ronments.

Garage uses pickle to handle parallelization, which limits the types of objects that can be used as class attributes
withing the environment. This class is a workaround, so that the parallel environments can have access to things
like a database.

get_params (**tags)
Get the list of parameters, filtered by the provided tags. Some common tags include ‘regularizable’ and
‘trainable’

Parameters tags (str) — Names of the paramters to return.

get_params_internal (**ags)
Internal method to be implemented which does not perform caching

Parameters tags (str) — Names of the paramters to return.

ast_toolbox.mcts package

MCTS Helper files

Submodules
ast_toolbox.mcts.ASTSim module

class ast_toolbox.mcts.ASTSim.AcionSequence (sequence, index=0)
Bases: object

Sturcture storing the actions sequences.
Parameters
» sequence (list) — The list of actions.
* index (int, optional) — The initial action index in the sequence.

ast_toolbox.mcts.ASTSim.action_seq policy (action_seq, s)
The policy wrapper for the action sequence.

Parameters

9.1. ast_toolbox package 69

AdaptiveStressTestingToolbox, Release 2020.09.01.0

e action_seq (ast_toolbox.mcts.ASTSim.AcionSequence) — The action se-
quence.

* s(ast_toolbox.mcts.AdaptiveStressTesting.ASTState)— The AST state.
Returns action (ast_toolbox.mcts.AdaptiveStressTesting. ASTAction) — The AST action.

ast_toolbox.mcts.ASTSim.play_sequence (ast, actions, verbose=False, sleeptime=0.0)
Rollout the action sequence.

Parameters

e ast (ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressTest)
— The AST object.

* actions (/ist) — The action sequence.

* verbose (bool, optional) — Whether to log the rollout information.

* sleeptime (float, optional) — The pause time between each step.
Returns

* rewards (list[float]) — The rewards.

* actions2 (list) — The action sequence of the path. Should be the same as the input actions.

ast_toolbox.mcts.AST_MCTS module

ast_toolbox.mcts.AST_MCTS.explore_ getAction (ast)
Get the exploration function from ast.

Parameters ast (ast_toolbox.mcts.AdaptiveStressTest.
AdaptiveStressTesting)— The AST object.

ast_toolbox.mcts.AST_MCTS.rollout_getAction (ast)
Get the rollout function from ast.

Parameters ast (ast_toolbox.mcts.AdaptiveStressTest.
AdaptiveStressTesting)— The AST object.

ast_toolbox.mcts.AST_MCTS.stress_test (ast, mcts_params, top_paths, verbose=True, re-

) S turn_tree=Fualse)
Run stress test with mode 1 (search with single tree).

Parameters

e ast (ast_toolbox.mcts.AdaptiveStressTest.AdaptiveStressTesting)
— The AST object.

* mcts_params (ast_toolbox.mcts.MCTSdpw.DPWParams)— The mcts parameters.

* top_paths (ast_toolbox.mcts.BoundedPriorityQueues)— The bounded prior-
ity queue to store top-rewarded trajectories.

* verbose (bool, optional) — Whether to logging test information

* return_tree (bool, optional) — Whether to return the search tree

Returns
* results (ast_toolbox.mcts.AdaptiveStressTest.
AdaptiveStressTesting) — The bounded priority queue storing top-rewarded
trajectories.

70 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* tree (dict) — The resulting searching tree.

ast_toolbox.mcts.AST_MCTS.stress_test2 (ast, mcts_params, top_paths, verbose=True, re-

)]) turn_tree=False)
Run stress test with mode 2 (search with multiple trees).

Parameters

e ast (ast_toolbox.mcts.AdaptiveStressTest.AdaptiveStressTesting)
— The AST object.

* mcts_params (ast_toolbox.mcts.MCTSdpw.DPWParams)— The mcts parameters.

e top_paths (ast_toolbox.mcts.BoundedPriorityQueues)— The bounded prior-
ity queue to store top-rewarded trajectories.

* verbose (bool, optional) — Whether to logging test information

* return_tree (bool, optional) — Whether to return the search tree

Returns
* results (ast_toolbox.mcts.AdaptiveStressTest.
AdaptiveStressTesting) — The bounded priority queue storing top-rewarded
trajectories.

* tree (dict) — The resulting searching tree.

ast_toolbox.mcts.AdaptiveStressTesting module

class ast_toolbox.mcts.AdaptiveStressTesting.ASTAction (action)
Bases: object

get ()
Get the true action.

Returns action — The true actions used in the env.

class ast_toolbox.mcts.AdaptiveStressTesting.ASTParams (max_steps, log_interval,
log_tabular, log_dir=None,
n_itr=100)

Bases: object
Structure that stores internal parameters for AST.
Parameters max_steps (int, optional) — The maximum search depth.

class ast_toolbox.mcts.AdaptiveStressTesting.ASTState (r_index, parent, action)
Bases: object

The AST state.
Parameters
* t_index (int) — The index of the timestep.

* parent (ast_toolbox.mcts.AdaptiveStressTesting.ASTState) — The par-
ent state.

e action (ast_toolbox.mcts.AdaptiveStressTesting.ASTAction)— The ac-
tion leading to this state.

9.1. ast_toolbox package 71

AdaptiveStressTestingToolbox, Release 2020.09.01.0

class ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressTest (p, env,

top_paths)
Bases: object

The AST wrapper for MCTS using the actions in env.action_space.
Parameters

* p(ast_toolbox.mcts.AdaptiveStressTesting.ASTParams)— The AST pa-
rameters

e env (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv.) — The
environment.

* top_paths (ast_toolbox.mcts.BoundedPriorityQueues, optional) — The
bounded priority queue to store top-rewarded trajectories.

explore_action (s, free)
Randomly sample an action for the exploration.

Parameters

* s (ast_toolbox.mcts.AdaptiveStressTesting.ASTState) — The current
state.

* tree (dict) — The searching tree.

Returns action (ast_toolbox.mcts.AdaptiveStressTesting.ASTAction) —
The sampled action.

get_reward()
Get the current AST reward.

Returns reward (bool) — The AST reward.
initialize ()
Initialize training variables.
Returns env_reset — The reset result from the env.

isterminal ()
Check whether the current path is finished.

Returns isterinal (bool) — Whether the current path is finished.

logging ()
Logging the training information.

random_action ()
Randomly sample an action for the rollout.

Returns action (ast_toolbox.mcts.AdaptiveStressTesting.ASTAction) -—
The sampled action.

reset_step_count ()
Reset the env step count.

transition model ()
Generate the transition model used in MCTS.

Returns transition_model (ast_toolbox.mcts.MDP.TransitionModel) - The tran-
sition model.

update (action)
Update the environment as well as the assosiated parameters.

72 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters action (ast_toolbox.mcts.AdaptiveStressTesting.ASTAction)—
The AST action.

Returns
¢ obs (numpy .ndarry) — The observation from the env step.
* reward (float) — The reward from the env step.
* done (bool) — The terminal indicator from the env step.
« info (dict) — The env info from the env step.

ast_toolbox.mcts.AdaptiveStressTesting.get_action_sequence (s)
Get the action sequence that leads to the state.

Parameters s (ast_toolbox.mcts.AdaptiveStressTesting.ASTState)— The target
state.

Returns actions (listfast_toolbox.mcts.AdaptiveStressTesting.ASTAction]) —
The action sequences leading to the target state.

ast_toolbox.mcts.AdaptiveStressTestingBlindValue module

class ast_toolbox.mcts.AdaptiveStressTestingBlindValue.AdaptiveStressTestBV (**kwargs)
Bases: ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressTest

The AST wrapper for MCTS using the Blind Value exploration'.

Parameters kwargs — Keyword arguments passed to ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressTest

References
explore_action (s, free)
Sample an action for the exploration using Blind Value.
Parameters

e s (ast_toolbox.mcts.AdaptiveStressTesting.ASTState) — The current
state.

* tree (dict) — The searching tree.

Returns action (ast_toolbox.mcts.AdaptiveStressTesting.ASTAction) -—
The sampled action.

getBV (y, rho, A, UCB)
Calculate the Blind Value for the candidate action y

Parameters
* y (numpy .ndarry) — The candidate action.
* rho (float) — The standard deviation ratio.

e A (listfast_toolbox.mcts.AdaptiveStressTesting.ASTAction]) — The
list of the explored AST actions

* UCB (dict) — The dictionary containing the upper confidence bound for each explored
action in the state node.

! Couetoux, Adrien, Hassen Doghmen, and Olivier Teytaud. “Improving the exploration in upper confidence trees.” International Conference
on Learning and Intelligent Optimization. Springer, Berlin, Heidelberg, 2012.

9.1. ast_toolbox package 73

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns BV (float) — The blind value.

getDistance (a, b)
Get the (LL2) distance between two actions.

Parameters
¢ a (numpy .ndarry) — The first action.
¢ b (numpy .ndarry) — The second action.
Returns distance (float) — The L2 distance between a and b.

getUCB (s)
Get the upper confidnece bound for the expected return for evary actions that has been explored at the
state.

Parameters s (ast_toolbox.MCTSdpw.StateNode) — The state node in the searching
tree

Returns UCB (dict) — The dictionary containing the upper confidence bound for each explored
action in the state node.

ast_toolbox.mcts.AdaptiveStressTestingRandomSeed module

class ast_toolbox.mcts.AdaptiveStressTestingRandomSeed.ASTRSAction (action,

eny)
Bases: object

The AST action containing the random seed.

Parameters action — The random seed. env: ast_toolbox.envs.go explore _ast_env.
GoExploreASTEnv

The environment.

get ()
Get the true action.

Returns action — The true actions used in the env.

class ast_toolbox.mcts.AdaptiveStressTestingRandomSeed.AdaptiveStressTestRS (**kwargs)
Bases: ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressTest

The AST wrapper for MCTS using random seeds as actions.
Parameters kwargs — Keyword arguments passed to ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressTest

explore_action (s, free)
Randomly sample an action for the exploration.

Returns action (ast_toolbox.mcts.AdaptiveStressTestingRandomSeed.
ASTRSAct ion) — The sampled action.

random_action ()
Randomly sample an action for the rollout.

Returns action (ast_toolbox.mcts.AdaptiveStressTestingRandomSeed.
ASTRSAct ion) — The sampled action.

reset_rsg ()
Reset the random seed generator.

74 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

ast_toolbox.mcts.BoundedPriorityQueues module

class ast_toolbox.mcts.BoundedPriorityQueues.BoundedPriorityQueue (N)
Bases: object

The bounded priority Queue.
Parameters N (int) — Size of the queue.

empty ()
Clear the queue.

enqueue (k, v, make_copy=False)
Storing k into the queue based on the priority value v.

Parameters
* k — The object to be stored.
* v (float) — The priority value.
* make_copy (bool, optional) — Whether to make a copy of the k.

haskey (k)
Check whether k in in the queue.

Returns has_key (bool) — Whether k in in the queue.

isempty ()
Check whether the queue is empty.

Returns is_empty (bool) — Whether the queue is empty.

length ()
Return the current size of the queue.

Returns length (int) — The current size of the queue.

ast_toolbox.mcts.MCTSdpw module

class ast_toolbox.mcts.MCTSdpw.DPWModel (model, getAction, getNextAction)
Bases: object

The model used in the tree search.
Parameters
e model (ast_toolbox.mcts.MDP.TransitionModel)— The transition model.
* getAction (function) — getAction(s, tree) returns the action used in rollout.
» getNextAction (function) — getNextAction(s, tree) returns the action used in exploration.

class ast_toolbox.mcts.MCTSdpw.DPWParams (d, gamma, ec, n, k, alpha, clear_nodes)
Bases: object

Structure that stores the parameters for the MCTS with DPW.
Parameters
* d (int) — The maximum searching depth.
» gamma (float) — The discount factor.

* ec (float) — The weight for the exploration bonus.

9.1. ast_toolbox package 75

AdaptiveStressTestingToolbox, Release 2020.09.01.0

 n (int) — The mximum number of iterations.
* k (float) — The constraint parameter used in DPW: IN(s,a)l<=kN(s)"alpha.
* alpha (floar) — The constraint parameter used in DPW: IN(s,a)l<=kN(s)"alpha.

* clear_nodes (bool) — Whether to clear redundant nodes in tree. Set it to True for saving
memoray. Set it to False to better tree plotting.

class ast_toolbox.mcts.MCTSdpw.DPWTree (p,f)
Bases: object

The structure storing the seaching tree.

class ast_toolbox.mcts.MCTSdpw.StateActionNode
Bases: object

The structure representing the state-action node.

class ast_toolbox.mcts.MCTSdpw.StateActionStateNode
Bases: object

The structure storing the transition state-action-state.

class ast_toolbox.mcts.MCTSdpw.StateNode
Bases: object

The structure representing the state node.

ast_toolbox.mcts.MCTSdpw.rollout (tree, s, depth)
Rollout from the current state s.

Parameters
e tree (ast_toolbox.mcts.MCTSdpw.DPWTree)— The seach tree.

s (ast_toolbox.mcts.AdaptiveStressTesting.ASTState) — The current
state.

* depth (int) — The maximum search depth
Returns q (floar) — The estimated return.

ast_toolbox.mcts.MCTSdpw.saveBackwardState (old_s_tree, new_s_tree, s_current)
Saving the s_current as well as all its predecessors in the old_s_tree into the new_s_tree.

Parameters
 old_s_tree (dict) — The old tree.
e new_s_tree (dict) — The new tree.

e s_current (ast_toolbox.mcts.AdaptiveStressTesting.ASTState) — The
current state.

Returns new_s_tree (dict) — The new tree.

ast_toolbox.mcts.MCTSdpw.saveForwardState (old_s_tree, new_s_tree, s)
Saving the s_current as well as all its successors in the old_s_tree into the new_s_tree.

Parameters
e old_s_tree (dict) — The old tree.
e new_s_tree (dict) — The new tree.

e s_current (ast_toolbox.mcts.AdaptiveStressTesting.ASTState) — The
current state.

76 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns new_s_tree (dict) — The new tree.

ast_toolbox.mcts.MCTSdpw.saveState (old_s_tree, s)
Saving the s_current as well as all its predecessors and successors in the old_s_tree into the new_s_tree.

Parameters
 old_s_tree (dict) — The old tree.

s (ast_toolbox.mcts.AdaptiveStressTesting.ASTState) — The current
state.

Returns new_s_tree (dict) — The new tree.

ast_toolbox.mcts.MCTSdpw.selectAction (ree, s, verbose=False)
Run MCTS to select one action for the state s

Parameters
e tree (ast_toolbox.mcts.MCTSdpw.DPWTree)— The seach tree.

s (ast_toolbox.mcts.AdaptiveStressTesting.ASTState) — The current
state.

* verbose (bool, optional) — Where to log the seaching information.
Returns action (ast_toolbox.mcts.AdaptiveStressTesting. ASTAction) — The selected AST action.

ast_toolbox.mcts.MCTSdpw.simulate (tree, s, depth, verbose=False)
Single run of the forward MCTS search.

Parameters
e tree (ast_toolbox.mcts.MCTSdpw.DPWTree)— The seach tree.

s (ast_toolbox.mcts.AdaptiveStressTesting.ASTState) — The current
state.

¢ depth (int) — The maximum search depth
* verbose (bool, optional) — Where to log the seaching information.

Returns q (floar) — The estimated return.

ast_toolbox.mcts.MDP module

class ast_toolbox.mcts.MDP.TransitionModel (getlnitialState, getNextState, isEndState,

maxSteps, goToState)
Bases: object

The wrapper for the transitin model used in the tree search.
Parameters
» getlnitialState (function) — getlnitialState() returns the initial AST state.
» getNextState (function) — getNextState(s, a) returns the next state and the reward.
« isEndState (function) — isEndState(s) returns whether s is a terminal state.
* maxSteps (int) — The maximum path length.
» goToState (function) — goToState(s) sets the simulator to the target state s.

ast_toolbox.mcts.MDP.simulate (model, p, policy, verbose=False, sleeptime=0.0)
Simulate the environment model using the policy and the parameter p.

9.1. ast_toolbox package 77

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters

e model (ast_toolbox.mcts.MDP.TransitionModel)— The environment model.

* p — The extra paramters needed by the policy.

* policy (function) — policy(p, s) returns the next action.

* verbose (bool, optional) — Whether to logging simulating information.

* sleeptime (float, optional) — The pause time between each step.
Returns

e cum_reward (float) — The cumulative reward.

* actions (/ist) — The action sequence of the path.

ast_toolbox.mcts.RNGWrapper module

class ast_toolbox.mcts.RNGWrapper .RSG (state_length=1, seed=0)
Bases: object

The random seed generator for AST using random seeds.
Parameters
* state_length (int, optional) — The length of the RSG state.
* seed (int, optional) — The initial seed to generate the initial state.

length ()
Return the length of the RSG state.

Returns length (int) — The length of the RSG state.

next ()
Step the RSG state.

set_from_seed (length, seed)
Set the RSG state using the seed.

Parameters
* length (inf) — The length of the RSG state.
* seed (inf) — The seed to generate the state.

ast_toolbox.mcts.RNGWrapper.seed_to_state_itr (state_length, seed)
Generate the RSG state using the seed.

Parameters
« state_length (inf) — The length of the RSG state.
* seed (int) — The seed to generate the state.

Returns state (numpy .ndarry) — The generated state.

ast_toolbox.mcts.tree_plot module

ast_toolbox.mcts.tree_plot.add_children (s, s_node, tree, graph, d)
Add successors of s into the graph.

78 Chapter 9.

ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters
* s(ast_toolbox.mcts.AdaptiveStressTesting.ASTState)— The AST state.
* s_node (pydot .Node) — The pydot node corresponding to s.
e tree (dict) — The tree.
* graph (pydot .Dot) — The pydot graph.
* d (int) — The depth.

ast_toolbox.mcts.tree_plot.get_root (free)
Get the root node of the tree.

Parameters tree (dict) — The tree.
Returns s (ast_toolbox.mcts.AdaptiveStressTesting.ASTState)— Theroot state.

ast_toolbox.mcts.tree_plot.plot_tree (tree, d, path, format="svg’)
Plot the tree.

Parameters
¢ tree (dict) — The tree.
* d (int) — The depth.
* path (str) — The plotting path.
* format (str) — The plotting format.

ast_toolbox.mcts.tree_plot.s2node (s, tree)
Transfer the AST state to pydot node.

Parameters
* s(ast_toolbox.mcts.AdaptiveStressTesting.ASTState)— The AST state.
* tree (dict) — The tree.

Returns node (pydot . Node) — The pydot node.

ast_toolbox.optimizers package

Optimizers for RL problems

Submodules

9.1. ast_toolbox package 79

AdaptiveStressTestingToolbox, Release 2020.09.01.0

ast_toolbox.optimizers.direction_constraint_optimizer module

class ast_toolbox.optimizers.direction_constraint_optimizer.DirectionConstraintOptimizer (cg

Bases: object
Performs constrained optimization via line search on the given gradient direction.
Parameters
* cg_iters (int, optional) — The number of CG iterations used to calculate AN-1 g.
* reg_coeff (float, optional) — A small value so that A -> A + reg*L.

» subsample_factor (int, optional) — Subsampling factor to reduce samples when using “con-
jugate gradient. Since the computation time for the descent direction dominates, this can
greatly reduce the overall computation time.

* debug_nan (bool, optional) — If set to True, NanGuard will be added to the compilation,
and ipdb will be invoked when nan is detected.

* accept_violation (bool, optional) — Whether to accept the descent step if it violates the line
search condition after exhausting all backtracking budgets.

constraint_val (inputs, extra_inputs=None)
Calculate the constraint value.

Parameters

* inputs — A list of symbolic variables as inputs, which could be subsampled if needed. It is
assumed that the first dimension of these inputs should correspond to the number of data
points.

* extra_inputs (optional) — A list of symbolic variables as extra inputs which should not be
subsampled.

Returns constraint_value (float) — The value of the constrained variable.

get_magnitude (direction, inputs, max_constraint_val=None, extra_inputs=None, subsam-

ple_grouped_inputs=None)
Calculate the update magnitude.

Parameters
* direction (:py:class: tensorflow.Tensor’) — The gradient direction.

* inputs — A list of symbolic variables as inputs, which could be subsampled if needed. It is
assumed that the first dimension of these inputs should correspond to the number of data
points.

80 Chapter 9. ast_toolbox

re

4

Su

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* max_constraint_val (float, optional) — The maximum value for the constrained variale.

* extra_inputs (optional) — A list of symbolic variables as extra inputs which should not be
subsampled.

» subsample_grouped_inputs (optional) — The list of inputs that are needed to be subsam-
pled.

Returns magnitude (float) — The update magnitude.

update_opt (target, leq_constraint, inputs, extra_inputs=None, constraint_name=’constraint’, *args,
**kwargs)
Update the internal tensowflow operations.

Parameters

* target — A parameterized object to optimize over. It should implement methods of the
garage.core.paramerized.Parameterized class.

¢ leq_constraint (:py:class: tensorflow.Tensor’) — The variable to be constrained.

* inputs — A list of symbolic variables as inputs, which could be subsampled if needed. It is
assumed that the first dimension of these inputs should correspond to the number of data
points.

* extra_inputs — A list of symbolic variables as extra inputs which should not be subsam-
pled.

ast_toolbox.policies package

Policies for solving AST problems.

class ast_toolbox.policies.GoExplorePolicy (env_spec, name="GoExplorePolicy’)
Bases: garage.tf.policies.base.StochasticPolicy

A stochastic policy for Go-Explore that takes actions uniformally at random.
Parameters
* env_spec (garage.envs.EnvSpec)— Environment specification.
* name (str) — Name for the tensors.

dist_info (obs, state_infos)
Distribution info.

Return the distribution information about the actions.
Parameters
* obs (array_like) — Observation values.

« state_infos (dict) — A dictionary whose values should contain information about the state
of the policy at the time it received the observation.

dist_info_sym (0obs_var, state_info_vars, name="dist_info_sym’)
Symbolic graph of the distribution.

Return the symbolic distribution information about the actions.
Parameters

* obs_var (tf. Tensor) — Symbolic variable for observations.

9.1. ast_toolbox package 81

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.tf.policies.base.html#garage.tf.policies.base.StochasticPolicy
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.html#garage.envs.EnvSpec
https://www.tensorflow.org/api_docs/python/tf/Tensor

AdaptiveStressTestingToolbox, Release 2020.09.01.0

« state_infos (dict) — A dictionary whose values should contain information about the state
of the policy at the time it received the observation.

* name (str) — Name of the symbolic graph.

get_action (observation)
Get action sampled from the policy.

Parameters observation (array_like) — Observation from the environment.
Returns array_like — Action sampled from the policy.

get_actions (observations)
Get actions sampled from the policy.

Parameters observations (list[array_like]) — Observations from the environment.
Returns array_like — Actions sampled from the policy.

log_diagnostics (paths)
Log extra information per iteration based on the collected paths.

reset (dones=None)
Reset the policy.

If dones is None, it will be by default np.array([True]) which implies the policy will not be “vectorized”,
i.e. number of parallel environments for training data sampling = 1.

Parameters dones (array_like) — Bool that indicates terminal state(s).

terminate ()
Clean up operation.

distribution
Distribution.

Returns Distribution.

vectorized
Indicates whether the policy is vectorized. If True, it should implement get_actions(), and support resetting
with multiple simultaneous states.

Submodules
ast_toolbox.policies.go_explore_policy module

class ast_toolbox.policies.go_explore_policy.GoExplorePolicy (env_spec,

name="GoExplorePolicy’)
Bases: garage.tf.policies.base.StochasticPolicy

A stochastic policy for Go-Explore that takes actions uniformally at random.
Parameters
* env_spec (garage.envs.EnvSpec) — Environment specification.
* name (str) — Name for the tensors.

dist_info (obs, state_infos)
Distribution info.

Return the distribution information about the actions.

Parameters

82 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.tf.policies.base.html#garage.tf.policies.base.StochasticPolicy
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.envs.html#garage.envs.EnvSpec

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* obs (array_like) — Observation values.

* state_infos (dict) — A dictionary whose values should contain information about the state
of the policy at the time it received the observation.

dist_info_sym (obs_var, state_info_vars, name="dist_info_sym’)
Symbolic graph of the distribution.

Return the symbolic distribution information about the actions.
Parameters
 obs_var (tf. Tensor) — Symbolic variable for observations.

« state_infos (dict) — A dictionary whose values should contain information about the state
of the policy at the time it received the observation.

* name (str) — Name of the symbolic graph.

get_action (observation)
Get action sampled from the policy.

Parameters observation (array_like) — Observation from the environment.
Returns array_like — Action sampled from the policy.

get_actions (observations)
Get actions sampled from the policy.

Parameters observations (list[array_like]) — Observations from the environment.
Returns array_like — Actions sampled from the policy.

log_diagnostics (paths)
Log extra information per iteration based on the collected paths.

reset (dones=None)
Reset the policy.

If dones is None, it will be by default np.array([True]) which implies the policy will not be “vectorized”,
i.e. number of parallel environments for training data sampling = 1.

Parameters dones (array_like) — Bool that indicates terminal state(s).

terminate ()
Clean up operation.

distribution
Distribution.

Returns Distribution.

vectorized
Indicates whether the policy is vectorized. If True, it should implement get_actions(), and support resetting
with multiple simultaneous states.

ast_toolbox.rewards package

Reward functions for AST formulated RL problems.

class ast_toolbox.rewards.ASTReward

Bases: object

Function to calculate the rewards for timesteps when optimizing AST solver policies.

9.1. ast_toolbox package 83

https://www.tensorflow.org/api_docs/python/tf/Tensor

AdaptiveStressTestingToolbox, Release 2020.09.01.0

give_reward (action, **kwargs)
Returns the reward for a given time step.

Parameters

e action (array_like) — Action taken by the AST solver.

» kwargs — Accepts relevant info for computing the reward.
Returns reward (floar) — Reward based on the previous action.

class ast_toolbox.rewards.ExampleAVReward (num_peds=1, cov_x=0.1, cov_y=0.01,

cov_sensor_noise=0.1, use_heuristic=True)
Bases: ast_toolbox.rewards.ast reward.ASTReward

An example implementation of an ASTReward for an AV validation scenario.
Parameters
* num_peds (int) — The number of pedestrians in the scenario.
e cov_x (float) — Covariance of the x-acceleration.
* cov_y (float) — Covariance of the y-acceleration.
* cov_sensor_noise (float) — Covariance of the sensor noise.

 use_heuristic (bool) — Whether to include a heuristic in the reward based on how close the
pedestrian is to the vehicle at the end of the trajectory.

give_reward (action, **kwargs)
Returns the reward for a given time step.

Parameters

e action (array_like) — Action taken by the AST solver.

» kwargs — Accepts relevant info for computing the reward.
Returns reward (floar) — Reward based on the previous action.

mahalanobis_d (action)
Calculate the Mahalanobis distance' between the action and the mean action.

Parameters action (array_like) — Action taken by the AST solver.

Returns float — The Mahalanobis distance between the action and the mean action.

References

Submodules
ast_toolbox.rewards.ast_reward module

class ast_toolbox.rewards.ast_reward.ASTReward
Bases: object

Function to calculate the rewards for timesteps when optimizing AST solver policies.

give_reward (action, **kwargs)
Returns the reward for a given time step.

! Mahalanobis, Prasanta Chandra. “On the generalized distance in statistics.” National Institute of Science of India, 1936. http://library.isical.
ac.in:8080/jspui/bitstream/123456789/6765/1/Vol02_1936_1_Art05-pcm.pdf

84 Chapter 9. ast_toolbox

http://library.isical.ac.in:8080/jspui/bitstream/123456789/6765/1/Vol02_1936_1_Art05-pcm.pdf
http://library.isical.ac.in:8080/jspui/bitstream/123456789/6765/1/Vol02_1936_1_Art05-pcm.pdf

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters
e action (array_like) — Action taken by the AST solver.
* kwargs — Accepts relevant info for computing the reward.

Returns reward (floar) — Reward based on the previous action.

ast_toolbox.rewards.example_av_reward module

An example implementation of an ASTReward for an AV validation scenario.

class ast_toolbox.rewards.example_av_reward.ExampleAVReward (num_peds=1,
cov_x=0.1,
cov_y=0.01,
cov_sensor_noise=0.1,

use_heuristic=True)
Bases: ast_toolbox.rewards.ast_reward.ASTReward

An example implementation of an ASTReward for an AV validation scenario.
Parameters
* num_peds (int) — The number of pedestrians in the scenario.
* cov_x (float) — Covariance of the x-acceleration.
* cov_y (float) — Covariance of the y-acceleration.
* cov_sensor_noise (float) — Covariance of the sensor noise.

¢ use_heuristic (bool) — Whether to include a heuristic in the reward based on how close the
pedestrian is to the vehicle at the end of the trajectory.

give_reward (action, **kwargs)
Returns the reward for a given time step.

Parameters

* action (array_like) — Action taken by the AST solver.

» kwargs — Accepts relevant info for computing the reward.
Returns reward (floar) — Reward based on the previous action.

mahalanobis_d (action)
Calculate the Mahalanobis distance' between the action and the mean action.

Parameters action (array_like) — Action taken by the AST solver.
Returns float — The Mahalanobis distance between the action and the mean action.
References
ast_toolbox.samplers package

Samplers for solving AST formualted RL problems.

! Mahalanobis, Prasanta Chandra. “On the generalized distance in statistics.” National Institute of Science of India, 1936. http://library.isical.
ac.in:8080/jspui/bitstream/123456789/6765/1/Vol02_1936_1_Art05-pcm.pdf

9.1. ast_toolbox package 85

http://library.isical.ac.in:8080/jspui/bitstream/123456789/6765/1/Vol02_1936_1_Art05-pcm.pdf
http://library.isical.ac.in:8080/jspui/bitstream/123456789/6765/1/Vol02_1936_1_Art05-pcm.pdf

AdaptiveStressTestingToolbox, Release 2020.09.01.0

class ast_toolbox.samplers.ASTVectorizedSampler (algo, env, n_envs=1, open_loop=True,

sim=<ast_toolbox.simulators.example_av_simulator.example_¢

object>, re-
ward_function=<ast_toolbox.rewards.example_av_reward.Exa
object>)

Bases: garage.sampler.on_policy_vectorized_sampler.OnPolicyVectorizedSampler

A vectorized sampler for AST to handle open-loop simulators.

Garage usually genearates samples in a closed-loop process. This version of the vectorized sampler instead
grabs dummy data until the full rollout specification is generated, then goes back and runs the simulate function
to actually obtain results. Rewards are then calculated and the path data is corrected.

Parameters

algo (garage.np.algos.base.RLAlgorithm)— The algorithm.
env (ast_toolbox.envs.ASTEnv)— The environment.
n_envs (int) — Number of parallel environments to run.

open_loop (bool) — True if the simulation is open-loop, meaning that AST must generate all
actions ahead of time, instead of being able to output an action in sync with the simulator,
getting an observation back before the next action is generated. False to get interactive
control, which requires that blackbox_sim_state is also False.

sim (ast_toolbox.simulators.ASTSimulator)— The simulator wrapper, inher-
iting from ast_toolbox.simulators.ASTSimulator.

reward_function (ast_toolbox.rewards.ASTReward) — The reward function, in-
heriting from ast_toolbox.rewards. ASTReward.

obtain_samples (itr, batch_size=None, whole_paths="False)
Sample the policy for new trajectories.

Parameters

e itr (int) — Iteration number.

* batch_size (int) — Number of samples to be collected. If None, it will be default
[algo.max_path_length * n_envs].

* whole_paths (bool) — Whether return all the paths or not. True by default. It’s possible
for the paths to have total actual sample size larger than batch_size, and will be truncated
if this flag is true.

Returns

list[dict] — A list of sampled rollout paths. Each rollout path is a dictionary with the following
keys:

* observations (numpy.ndarray)
* actions (numpy.ndarray)

* rewards (numpy.ndarray)

* agent_infos (dict)

¢ env_infos (dict)

slice dict (in_dict, slice_idx)
Helper function to recursively parse through a dictionary of dictionaries and arrays to slice the arrays at a
certain index.

Parameters

86

Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.sampler.on_policy_vectorized_sampler.html#garage.sampler.on_policy_vectorized_sampler.OnPolicyVectorizedSampler
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.np.algos.base.html#garage.np.algos.base.RLAlgorithm

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* in_dict (dict) — Dictionary where the values are arrays or other dictionaries that follow
this stipulation.

* slice_idx (inf) — Index to slice each array at.
Returns dict — Dictionary where arrays at every level are sliced.

class ast_toolbox.samplers.BatchSampler (algo, env, n_envs=1,
open_loop=True, batch_simulate=False,
sim=<ast_toolbox.simulators.example_av_simulator.example_av_simulato:
object>, reward_function=<ast_toolbox.rewards.example_av_reward.Exan

object>)
Bases: garage.sampler.base.BaseSampler

Collects samples in parallel using a stateful pool of workers.
Parameters
* algo (garage.np.algos.base.RLAlgorithm)— The algorithm.
e env (ast_toolbox.envs.ASTEnv)— The environment.
* n_envs (int) — Number of parallel environments to run.

* open_loop (bool) — True if the simulation is open-loop, meaning that AST must generate all
actions ahead of time, instead of being able to output an action in sync with the simulator,
getting an observation back before the next action is generated. False to get interactive
control, which requires that blackbox_sim_state is also False.

 batch_simulate (bool) — When in obtain_samples with open_loop == True, the sampler
will call self.sim.batch_simulate_paths if batch_simulate is True, and self.sim.simulate if
False.

e sim (ast_toolbox.simulators.ASTSimulator)— The simulator wrapper, inher-
iting from ast_toolbox.simulators.ASTSimulator.

e reward_function (ast_toolbox.rewards.ASTReward) — The reward function, in-
heriting from ast_toolbox.rewards. ASTReward.

* Args — algo (garage.np.algos.RLAlgorithm): The algorithm. env (gym.Env): The environ-
ment.

obtain_samples (itr, batch_size=None, whole_paths=True)
Collect samples for the given iteration number.

Parameters
e itr (int) — Iteration number.
* batch_size (int, optional) — How many simulation steps to run in each epoch.
» whole_paths (bool, optional) — Whether to return the full rollout paths data.

shutdown_worker ()
Terminate workers if necessary.

slice dict (in_dict, slice_idx)
Helper function to recursively parse through a dictionary of dictionaries and arrays to slice the arrays at a
certain index.

Parameters

e in_dict (dict) — Dictionary where the values are arrays or other dictionaries that follow
this stipulation.

* slice_idx (int) — Index to slice each array at.

9.1. ast_toolbox package 87

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.sampler.base.html#garage.sampler.base.BaseSampler
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.np.algos.base.html#garage.np.algos.base.RLAlgorithm

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns dict — Dictionary where arrays at every level are sliced.

start_worker ()
Initialize the sampler.

Submodules
ast_toolbox.samplers.ast_vectorized_sampler module

class ast_toolbox.samplers.ast_vectorized_sampler.ASTVectorizedSampler (algo,
env,
n_envs=1,
open_loop=True,
sim=<ast_toolbox.simulator.
ob-
Ject>,
re-
ward_function=<ast_toolbo:
ob-

Ject>)
Bases: garage.sampler.on_policy_vectorized_sampler.OnPolicyVectorizedSampler

A vectorized sampler for AST to handle open-loop simulators.

Garage usually genearates samples in a closed-loop process. This version of the vectorized sampler instead
grabs dummy data until the full rollout specification is generated, then goes back and runs the simulate function
to actually obtain results. Rewards are then calculated and the path data is corrected.

Parameters
» algo (garage.np.algos.base.RLAlgorithm)— The algorithm.
e env (ast_toolbox.envs.ASTEnv)— The environment.
* n_envs (int) — Number of parallel environments to run.

* open_loop (bool) — True if the simulation is open-loop, meaning that AST must generate all
actions ahead of time, instead of being able to output an action in sync with the simulator,
getting an observation back before the next action is generated. False to get interactive
control, which requires that blackbox_sim_state is also False.

* sim (ast_toolbox.simulators.ASTSimulator)— The simulator wrapper, inher-
iting from ast_toolbox.simulators.ASTSimulator.

e reward_function (ast_toolbox.rewards.ASTReward) — The reward function, in-
heriting from ast_toolbox.rewards.ASTReward.

obtain_samples (itr, batch_size=None, whole_paths=False)
Sample the policy for new trajectories.

Parameters
e itr (int) — Iteration number.

 batch_size (inf) — Number of samples to be collected. If None, it will be default
[algo.max_path_length * n_envs].

» whole_paths (bool) — Whether return all the paths or not. True by default. It’s possible
for the paths to have total actual sample size larger than batch_size, and will be truncated
if this flag is true.

88 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.sampler.on_policy_vectorized_sampler.html#garage.sampler.on_policy_vectorized_sampler.OnPolicyVectorizedSampler
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.np.algos.base.html#garage.np.algos.base.RLAlgorithm

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns

list[dict] — A list of sampled rollout paths. Each rollout path is a dictionary with the following
keys:

¢ observations (numpy.ndarray)
* actions (numpy.ndarray)

* rewards (numpy.ndarray)

* agent_infos (dict)

¢ env_infos (dict)

slice dict (in_dict, slice_idx)
Helper function to recursively parse through a dictionary of dictionaries and arrays to slice the arrays at a
certain index.

Parameters

¢ in_dict (dict) — Dictionary where the values are arrays or other dictionaries that follow
this stipulation.

* slice_idx (inf) — Index to slice each array at.

Returns dict — Dictionary where arrays at every level are sliced.

ast_toolbox.samplers.batch_sampler module

Module for parallel sampling a batch of rollouts

class ast_toolbox.samplers.batch_sampler.BatchSampler (algo, eny, n_envs=1,
open_loop=True,
batch_simulate=False,
sim=<ast_toolbox.simulators.example_av_simulator.e

object>, re-
ward_function=<ast_toolbox.rewards.example_av_re
object>)

Bases: garage.sampler.base.BaseSampler
Collects samples in parallel using a stateful pool of workers.
Parameters
e algo (garage.np.algos.base.RLAlgorithm)— The algorithm.
e env (ast_toolbox.envs.ASTEnv)— The environment.
* n_envs (int) — Number of parallel environments to run.

* open_loop (bool) — True if the simulation is open-loop, meaning that AST must generate all
actions ahead of time, instead of being able to output an action in sync with the simulator,
getting an observation back before the next action is generated. False to get interactive
control, which requires that blackbox_sim_state is also False.

* batch_simulate (bool) — When in obtain_samples with open_loop == True, the sampler
will call self.sim.batch_simulate_paths if batch_simulate is True, and self.sim.simulate if
False.

e sim (ast_toolbox.simulators.ASTSimulator)— The simulator wrapper, inher-
iting from ast_toolbox.simulators.ASTSimulator.

9.1. ast_toolbox package 89

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.sampler.base.html#garage.sampler.base.BaseSampler
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.np.algos.base.html#garage.np.algos.base.RLAlgorithm

AdaptiveStressTestingToolbox, Release 2020.09.01.0

e reward_function (ast_toolbox.rewards.ASTReward) — The reward function, in-
heriting from ast_toolbox.rewards.ASTReward.

* Args — algo (garage.np.algos.RLAlgorithm): The algorithm. env (gym.Env): The environ-
ment.

obtain_samples (itr, batch_size=None, whole_paths=True)
Collect samples for the given iteration number.

Parameters
e itr (int) — Iteration number.
* batch_size (int, optional) — How many simulation steps to run in each epoch.
» whole_paths (bool, optional) — Whether to return the full rollout paths data.

shutdown_worker ()
Terminate workers if necessary.

slice dict (in_dict, slice_idx)
Helper function to recursively parse through a dictionary of dictionaries and arrays to slice the arrays at a
certain index.

Parameters

* in_dict (dict) — Dictionary where the values are arrays or other dictionaries that follow
this stipulation.

* slice_idx (inf) — Index to slice each array at.
Returns dict — Dictionary where arrays at every level are sliced.

start_worker ()
Initialize the sampler.

ast_toolbox.samplers.batch_sampler.worker_init_ tf (g)
Initialize the tf.Session on a worker.

Parameters g (garage.sampler.stateful_pool.SharedGlobal)— SharedGlobal class
from garage.sampler.stateful_pool.

ast_toolbox.samplers.batch_sampler.worker_init_tf_ vars(g)
Initialize the policy parameters on a worker.

Parameters g (garage.sampler.stateful_pool.SharedGlobal) - SharedGlobal class
from garage.sampler.stateful_pool.

ast_toolbox.samplers.parallel_sampler module

Original parallel sampler pool backend.

ast_toolbox.samplers.parallel_sampler.close()
Close the worker pool.

ast_toolbox.samplers.parallel_sampler.initialize (n_parallel)
Initialize the worker pool.

SIGINT is blocked for all processes created in parallel_sampler to avoid the creation of sleeping and zombie
processes.

If the user interrupts run_experiment, there’s a chance some processes won’t die due to a dead lock condition
where one of the children in the parallel sampler exits without releasing a lock once after it catches SIGINT.

90 Chapter 9. ast_toolbox

https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.sampler.stateful_pool.html#garage.sampler.stateful_pool.SharedGlobal
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.sampler.stateful_pool.html#module-garage.sampler.stateful_pool
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.sampler.stateful_pool.html#garage.sampler.stateful_pool.SharedGlobal
https://garage.readthedocs.io/en/v2019.10.1/_apidoc/garage.sampler.stateful_pool.html#module-garage.sampler.stateful_pool

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Later the parent tries to acquire the same lock to proceed with his cleanup, but it remains sleeping waiting for
the lock to be released. In the meantime, all the process in parallel sampler remain in the zombie state since the
parent cannot proceed with their clean up.

Parameters n_parallel (inf) — Number of workers to run in parallel.

ast_toolbox.samplers.parallel_sampler.populate_task (env, policy, scope=None)
Set each worker’s env and policy.

Parameters
e env (ast_toolbox.envs.ASTEnv)— The environment.
* policy (garage.tf.policies.Policy)— The policy.

* scope (str) — Scope for identifying the algorithm. Must be specified if running multiple
algorithms simultaneously, each using different environments and policies.

ast_toolbox.samplers.parallel_sampler.sample_paths (policy_params, max_samples,
max_path_length=inf,

env_params=None, scope=None)
Sample paths from each worker.

Parameters
* policy_params — parameters for the policy. This will be updated on each worker process

* max_samples (int) — desired maximum number of samples to be collected. The actual
number of collected samples might be greater since all trajectories will be rolled out either
until termination or until max_path_length is reached

* max_path_length (int, optional) — horizon / maximum length of a single trajectory

* scope (str) — Scope for identifying the algorithm. Must be specified if running multiple
algorithms simultaneously, each using different environments and policies.

ast_toolbox.samplers.parallel_sampler.set_seed (seed)
Set the seed in each worker.

Parameters seed (inf) — The random seed to be used by the worker.

ast_toolbox.samplers.parallel_sampler.terminate_task (scope=None)
Close each worker’s env and terminate each policy.

Parameters scope (str) — Scope for identifying the algorithm. Must be specified if running multiple
algorithms simultaneously, each using different environments and policies.

ast_toolbox.simulators package

Simulator wrappers to formulate validation as an AST RL problem

class ast_toolbox.simulators.ASTSimulator (blackbox_sim_state=True,
open_loop=True, fixed_initial_state=True,

max_path_length=50)
Bases: object

Class template to wrap a simulator for interaction with AST.

This class already tracks the simulator options to return the correct observation type. In addition,
max_path_length and self._path_length are handled by this parent class.

Parameters

9.1. ast_toolbox package 91

https://garage.readthedocs.io/en/latest/_autoapi/garage/tf/policies/index.html#garage.tf.policies.Policy

AdaptiveStressTestingToolbox, Release 2020.09.01.0

 blackbox_sim_state (bool, optional) — True if the true simulation state can not be observed,
in which case actions and the initial conditions are used as the observation. False if the
simulation state can be observed, in which case it will be used.

* open_loop (bool, optional) — True if the simulation is open-loop, meaning that AST must
generate all actions ahead of time, instead of being able to output an action in sync with
the simulator, getting an observation back before the next action is generated. False to get
interactive control, which requires that blackbox_sim_state is also False.

* fixed_init_state (bool, optional) — True if the initial state is fixed, False to sample the initial
state for each rollout from the observaation space.

» max_path_length (int, optional) — Maximum length of a single rollout.

clone_state ()
Clone the simulator state for later resetting.

This function is used in conjunction with restore_state for Go-Explore and Backwards Algorithm to do
their deterministic resets.

Returns array_like — An array of all the simulation state variables.

closed_loop_step (action)
User implemented function to step the simulation forward in time when closed-loop control is active.

This function should step the simulator forward a single timestep based on the given action. It will only be
called when open_loop is False. This function should always return self.observation_return().

Parameters action (array_like) — A 1-D array of actions taken by the AST Solver which deter-
ministically control a single step forward in the simulation.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

get_reward_info ()
Returns any info needed by the reward function to calculate the current reward.

is_goal ()
Returns whether the current state is in the goal set. :returns: bool — True if current state is in goal set.

is_terminal ()
Returns whether rollout horizon has been reached. :returns: bool — True if rollout horizon has been reached.

log ()
perform any logging steps

observation_ return ()
Helper function to return the correct observation based on settings.

Returns array_like — An observation from the timestep, which is either from the simulator if
open_loop is False and blackbox_sim_state is True, or else the initial conditions.

render (**kwargs)
Either renders a simulation scene or returns data used for external rendering.

Parameters kwargs — Keyword arguments used in the simulators render function.

reset (s_0)
Resets the state of the environment, returning an initial observation.

User implementations should always call the super class implementation. This function should always
return self.observation_return().

Parameters s_0 (array_like) — The initial conditions to reset the simulator to.

92 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

restore_state (in_simulator_state)
Reset the simulation deterministically to a previously cloned state.

This function is used in conjunction with clone_state for Go-Explore and Backwards Algorithm to do their
deterministic resets.

Parameters in_simulator_state (array_like) — An array of all the simulation state variables.

simulate (actions, s_0)
Run a full simulation given the AST solver’s actions and initial conditions.

simulate takes in the AST solver’s actions and the initial conditions. It should return two values: a terminal
index and an array of relevant simulation information.

Parameters

* actions (list[array_like]) — A sequential list of actions taken by the AST Solver which
deterministically control the simulation.

* s_0 (array_like) — An array specifying the initial conditions to set the simulator to.
Returns

 terminal_index (inr) — The index of the action that resulted in a state in the goal set E. If
no state is found terminal_index should be returned as -1.

* array_like — An array of relevant simulator info, which can then be used for analysis or
diagnostics.

step (action)
Step the simulation forward in time.

step takes in a the actions that deterministically control a single step forward in the simulation. It checks
to see if the rollout horizon has been reached, and then calls closed_loop_step if the simulation is set to
open_loop == False.

Parameters action (array_like) — A 1-D array of actions taken by the AST Solver which deter-
ministically control a single step forward in the simulation.

Returns array_like — An observation from the timestep, which is either from the simulator if
open_loop is False and blackbox_sim_state is True, or else the initial conditions.

class ast_toolbox.simulators.ExampleAVSimulator (num_peds=1, simulator_args=None,
*rkwargs)
Bases: ast_toolbox.simulators.ast_simulator.ASTSimulator

Example simulator wrapper for a scenario of an AV approaching a crosswalk where some pedestrians are cross-
ing.
Wraps ast_toolbox.simulators.example _av_simulator.ToyAVSimulator

Parameters

* num_peds (int) — Number of pedestrians crossing the street.

 simulator_args (dict) — Dictionary of keyword arguments to be passed to the wrapped sim-
ulator.

» kwargs — Keyword arguments passed to the super class.

clone_state ()
Clone the simulator state for later resetting.

9.1. ast_toolbox package 93

AdaptiveStressTestingToolbox, Release 2020.09.01.0

This function is used in conjunction with restore_state for Go-Explore and Backwards Algorithm to do
their deterministic resets.

Returns array_like — An array of all the simulation state variables.

closed_loop_step (action)
User implemented function to step the simulation forward in time when closed-loop control is active.

This function should step the simulator forward a single timestep based on the given action. It will only be
called when open_loop is False. This function should always return self.observation_return().

Parameters action (array_like) — A 1-D array of actions taken by the AST Solver which deter-
ministically control a single step forward in the simulation.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

get_first_action()
An initialization method used in Go-Explore.

Returns array_like — A 1-D array of the same dimension as the action space, all zeros.

get_reward_info ()
Returns any info needed by the reward function to calculate the current reward.

is_goal ()
Returns whether the current state is in the goal set. :returns: bool — True if current state is in goal set.

log ()
Perform any logging steps.

reset (s_0)
Resets the state of the environment, returning an initial observation.

User implementations should always call the super class implementation. This function should always
return self.observation_return().

Parameters s_0 (array_like) — The initial conditions to reset the simulator to.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

restore_state (in_simulator_state)
Reset the simulation deterministically to a previously cloned state.

This function is used in conjunction with clone_state for Go-Explore and Backwards Algorithm to do their
deterministic resets.

Parameters in_simulator_state (array_like) — An array of all the simulation state variables.

simulate (actions, s_0)
Run a full simulation given the AST solver’s actions and initial conditions.

simulate takes in the AST solver’s actions and the initial conditions. It should return two values: a terminal
index and an array of relevant simulation information.

Parameters

* actions (list[array_like]) — A sequential list of actions taken by the AST Solver which
deterministically control the simulation.

* s_0 (array_like) — An array specifying the initial conditions to set the simulator to.

Returns

94 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* terminal_index (inr) — The index of the action that resulted in a state in the goal set E. If
no state is found terminal_index should be returned as -1.

* array_like — An array of relevant simulator info, which can then be used for analysis or
diagnostics.

Subpackages
ast_toolbox.simulators.example_av_simulator package

Toy AV simulator and an example AST simulator wrapper

class ast_toolbox.simulators.example_av_simulator.ToyAVSimulator (num_peds=1,
dr=0.1, al-
pha=0.85,
beta=0.005,
v_des=11.17,
delta=4.0,
t_headway=1.5,
a_max=3.0,
s_min=4.0,
d_cmf=2.0,
d_max=9.0,
min_dist_x=2.5,
min_dist_y=1.4,
car_init_x=-
35.0,
car_init_y=0.0)

Bases: object

A toy simulator of a scenario of an AV approaching a crosswalk where some pedestrians are crossing.

The vehicle runs a modified version of the Intelligent Driver Model'. The vehicle treats the closest pedestrian
in the road as a car to follow. If no pedestrians are in the road, it attempts to maintain the desired speed. Noisy
observations of the pedestrian are smoothed through an alpha-beta filter’.

A collision results if any pedestrian’s x-distance and y-distance to the ego vehicle are less than the respective
min_dist_x and min_dist_y.

The origin is centered in the middle of the east/west lane and the north/south crosswalk. The positive x proceeds
east down the lane, the positive y proceeds north across the crosswalk.

Parameters
* num_peds (int) — The number of pedestrians crossing the street.
¢ dt (float) — The length (in seconds) of each timestep.
» alpha (float) — The alpha parameter in the tracker’s alpha-beta filter?.
* beta (float) — The beta parameter in the tracker’s alpha-beta filter”.
* v_des (float) — The desired velocity, in meters per second, for the ego vehicle to maintain

» delta (float) — The delta parameter in the IDM algorithm!.

! Treiber, Martin, Ansgar Hennecke, and Dirk Helbing. “Congested traffic states in empirical observations and microscopic simulations.”
Physical review E 62.2 (2000): 1805. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.62.1805

2 Rogers, Steven R. “Alpha-beta filter with correlated measurement noise.” IEEE Transactions on Aerospace and Electronic Systems 4 (1987):
592-594. https://ieeexplore.ieee.org/abstract/document/4104388

9.1. ast_toolbox package 95

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.62.1805
https://ieeexplore.ieee.org/abstract/document/4104388

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* t_headway (float) — The headway parameter in the IDM algorithm'.

* a_max (float) — The maximum acceleration parameter in the IDM algorithm!.

* s_min (float) — The minimum follow distance parameter in the IDM algorithm'.

+ d_cmf (float) — The maximum comfortable deceleration parameter in the IDM algorithm'.
* d_max (float) — The maximum deceleration parameter in the IDM algorithm!.

» min_dist_x (floar) — The minimum x-distance between the ego vehicle and a pedestrian.
* min_dist_y (floar) — The minimum y-distance between the ego vehicle and a pedestrian.
* car_init_x (floar) — The initial x-position of the ego vehicle.

* car_init_y (float) — The initial y-position of the ego vehicle.

References
collision_detected ()
Returns whether the current state is in the goal set.
Checks to see if any pedestrian’s position violates both the min_dist_x and min_dist_y constraints.
Returns bool — True if current state is in goal set.

get_ground_truth ()
Clones the ground truth simulator state.

Returns dict — A dictionary of simulator state variables.

log ()
Perform any logging steps.

move_car (car, accel)
Update the ego vehicle’s state.

Parameters
e car (array_like) — The ego vehicle’s state: [x-velocity, y-velocity, x-position, y-position].
* accel (float) — The ago vehicle’s acceleration.

Returns array_like — An updated version of the ego vehicle’s state.

observe ()
Get the ground truth state of the pedestrian relative to the ego vehicle.

reset (s_0)
Resets the state of the environment, returning an initial observation.

Parameters s_0 (array_like) — The initial conditions to reset the simulator to.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

run_simulation (actions, s_0, simulation_horizon)
Run a full simulation given the AST solver’s actions and initial conditions.

Parameters

e actions (list[array_like]) — A sequential list of actions taken by the AST Solver which
deterministically control the simulation.

* s_0 (array_like) — An array specifying the initial conditions to set the simulator to.

96 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* simulation_horizon (int) — The maximum number of steps a simulation rollout is allowed
to run.

Returns

* terminal_index (inr) — The index of the action that resulted in a state in the goal set E. If
no state is found terminal_index should be returned as -1.

e array_like — An array of relevant simulator info, which can then be used for analysis or
diagnostics.

sensors (peds, noise)
Get a noisy observation of the pedestrians’ locations and velocities.

Parameters

* peds (array_like) — Positions and velocities of the pedestrians.

* noise (array_like) — Noise to add to the positions and velocities of the pedestrians.
Returns array_like — Noisy observation of the pedestrians’ locations and velocities.

set_ground_truth (in_simulator_state)
Sets the simulator state variables.

Parameters in_simulator_state (dicr) — A dictionary of simulator state variables.

step_simulation (action)
Handle anything that needs to take place at each step, such as a simulation update or write to file.

Parameters action (array_like) — A 1-D array of actions taken by the AST Solver which deter-
ministically control a single step forward in the simulation.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

tracker (estimate_old, measurements)
An alpha-beta filter to smooth noisy observations into an estimate of pedestrian state.

Parameters
* estimate_old (array_like) — The smoothed state estimate from the previous timestep.

* measurements (array_like) — The noisy observation of pedestrian state from the current
timestep.

Returns array_like — The smoothed state estimate of pedestrian state from the current timestep.

update_car (obs, v_car)
Calculate the ego vehicle’s acceleration.

Parameters
* obs (array_like) — Smoothed estimate of pedestrian state from the tracker.
 v_car (float) — Current velocity of the ego vehicle.

Returns float — The acceleration of the ego vehicle.

update_peds ()
Update the pedestrian’s state.

class ast_toolbox.simulators.example_av_simulator.ExampleAVSimulator (num_peds=1,
simula-
tor_args=None,

*kkwargs)
Bases: ast_toolbox.simulators.ast_simulator.ASTSimulator

9.1. ast_toolbox package 97

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Example simulator wrapper for a scenario of an AV approaching a crosswalk where some pedestrians are cross-
ing.
Wraps ast_toolbox.simulators.example av_simulator.ToyAVSimulator

Parameters

* num_peds (int) — Number of pedestrians crossing the street.

 simulator_args (dict) — Dictionary of keyword arguments to be passed to the wrapped sim-
ulator.

» kwargs — Keyword arguments passed to the super class.

clone_state ()
Clone the simulator state for later resetting.

This function is used in conjunction with restore_state for Go-Explore and Backwards Algorithm to do
their deterministic resets.

Returns array_like — An array of all the simulation state variables.

closed_loop_step (action)
User implemented function to step the simulation forward in time when closed-loop control is active.

This function should step the simulator forward a single timestep based on the given action. It will only be
called when open_loop is False. This function should always return self.observation_return().

Parameters action (array_like) — A 1-D array of actions taken by the AST Solver which deter-
ministically control a single step forward in the simulation.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

get_first_action()
An initialization method used in Go-Explore.

Returns array_like — A 1-D array of the same dimension as the action space, all zeros.

get_reward_info ()
Returns any info needed by the reward function to calculate the current reward.

is_goal()
Returns whether the current state is in the goal set. :returns: bool — True if current state is in goal set.

log ()
Perform any logging steps.

reset (5_0)
Resets the state of the environment, returning an initial observation.

User implementations should always call the super class implementation. This function should always
return self.observation_return().

Parameters s_0 (array_like) — The initial conditions to reset the simulator to.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

restore_state (in_simulator_state)
Reset the simulation deterministically to a previously cloned state.

This function is used in conjunction with clone_state for Go-Explore and Backwards Algorithm to do their
deterministic resets.

Parameters in_simulator_state (array_like) — An array of all the simulation state variables.

98 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

simulate (actions, s_0)
Run a full simulation given the AST solver’s actions and initial conditions.

simulate takes in the AST solver’s actions and the initial conditions. It should return two values: a terminal
index and an array of relevant simulation information.

Parameters

* actions (list[array_like]) — A sequential list of actions taken by the AST Solver which
deterministically control the simulation.

* s_0 (array_like) — An array specifying the initial conditions to set the simulator to.
Returns

* terminal_index (inf) — The index of the action that resulted in a state in the goal set E. If
no state is found terminal_index should be returned as -1.

e array_like — An array of relevant simulator info, which can then be used for analysis or
diagnostics.

Submodules

ast_toolbox.simulators.example_av_simulator.example_av_simulator module

Example simulator wrapper for a scenario of an AV approaching a crosswalk where some pedestrians are crossing.

class ast_toolbox.simulators.example_av_simulator.example_av_simulator.ExampleAVSimulator (;

Bases: ast_toolbox.simulators.ast_simulator.ASTSimulator

Example simulator wrapper for a scenario of an AV approaching a crosswalk where some pedestrians are cross-
ing.

Wraps ast_toolbox.simulators.example _av_simulator.ToyAVSimulator
Parameters
* num_peds (int) — Number of pedestrians crossing the street.

 simulator_args (dict) — Dictionary of keyword arguments to be passed to the wrapped sim-
ulator.

* kwargs — Keyword arguments passed to the super class.

clone_state()
Clone the simulator state for later resetting.

This function is used in conjunction with restore_state for Go-Explore and Backwards Algorithm to do
their deterministic resets.

Returns array_like — An array of all the simulation state variables.

closed_loop_step (action)
User implemented function to step the simulation forward in time when closed-loop control is active.

This function should step the simulator forward a single timestep based on the given action. It will only be
called when open_loop is False. This function should always return self.observation_return().

9.1.

ast_toolbox package 99

s
I
/
1

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters action (array_like) — A 1-D array of actions taken by the AST Solver which deter-
ministically control a single step forward in the simulation.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

get_first_action()
An initialization method used in Go-Explore.

Returns array_like — A 1-D array of the same dimension as the action space, all zeros.

get_reward_info ()
Returns any info needed by the reward function to calculate the current reward.

is_goal()
Returns whether the current state is in the goal set. :returns: bool — True if current state is in goal set.

log ()
Perform any logging steps.

reset (s_0)
Resets the state of the environment, returning an initial observation.

User implementations should always call the super class implementation. This function should always
return self.observation_return().

Parameters s_0 (array_like) — The initial conditions to reset the simulator to.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

restore_ state (in_simulator_state)
Reset the simulation deterministically to a previously cloned state.

This function is used in conjunction with clone_state for Go-Explore and Backwards Algorithm to do their
deterministic resets.

Parameters in_simulator_state (array_like) — An array of all the simulation state variables.

simulate (actions, s_0)
Run a full simulation given the AST solver’s actions and initial conditions.

simulate takes in the AST solver’s actions and the initial conditions. It should return two values: a terminal
index and an array of relevant simulation information.

Parameters

* actions (list[array_like]) — A sequential list of actions taken by the AST Solver which
deterministically control the simulation.

* s_0 (array_like) — An array specifying the initial conditions to set the simulator to.
Returns

* terminal_index (inf) — The index of the action that resulted in a state in the goal set E. If
no state is found terminal_index should be returned as -1.

e array_like — An array of relevant simulator info, which can then be used for analysis or
diagnostics.

ast_toolbox.simulators.example_av_simulator.toy_av_simulator module

A toy simulator of a scenario of an AV approaching a crosswalk where some pedestrians are crossing.

100 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

class ast_toolbox.simulators.example_av_simulator.toy_av_simulator.ToyAVSimulator (num_peds=.

Bases: object

A toy simulator of a scenario of an AV approaching a crosswalk where some pedestrians are crossing.

The vehicle runs a modified version of the Intelligent Driver Model'. The vehicle treats the closest pedestrian
in the road as a car to follow. If no pedestrians are in the road, it attempts to maintain the desired speed. Noisy

observations of the pedestrian are smoothed through an alpha-beta filter”.

A collision results if any pedestrian’s x-distance and y-distance to the ego vehicle are less than the respective

min_dist_x and min_dist_y.

The origin is centered in the middle of the east/west lane and the north/south crosswalk. The positive x proceeds

east down the lane, the positive y proceeds north across the crosswalk.

Parameters

num_peds (int) — The number of pedestrians crossing the street.

dt (float) — The length (in seconds) of each timestep.

alpha (float) — The alpha parameter in the tracker’s alpha-beta filter?.

beta (float) — The beta parameter in the tracker’s alpha-beta filter?.

v_des (float) — The desired velocity, in meters per second, for the ego vehicle to maintain
delta (float) — The delta parameter in the IDM algorithm'.

t_headway (float) — The headway parameter in the IDM algorithm'.

a_max (float) — The maximum acceleration parameter in the IDM algorithm'.

s_min (float) — The minimum follow distance parameter in the IDM algorithm!.

d_emf (float) — The maximum comfortable deceleration parameter in the IDM algorithm'.

d_max (float) — The maximum deceleration parameter in the IDM algorithm!.
min_dist_x (float) — The minimum x-distance between the ego vehicle and a pedestrian.
min_dist_y (float) — The minimum y-distance between the ego vehicle and a pedestrian.

car_init_x (float) — The initial x-position of the ego vehicle.

! Treiber, Martin, Ansgar Hennecke, and Dirk Helbing. “Congested traffic states in empirical observations and microscopic simulations.”

Physical review E 62.2 (2000): 1805. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.62.1805

2 Rogers, Steven R. “Alpha-beta filter with correlated measurement noise.” IEEE Transactions on Aerospace and Electronic Systems 4 (1987):

592-594. https://ieeexplore.ieee.org/abstract/document/4104388

9.1. ast_toolbox package

101

dr=0.1,

al-
pha=0.85,
beta=0.005,
v_des=11.1;
delta=4.0,
t_headway=
a_max=3.0,
s_min=4.0,
d_cmf=2.0,
d_max=9.0,
min_dist_x=
min_dist_y=
car_init_x=-
35.0,
car_init_y=(

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.62.1805
https://ieeexplore.ieee.org/abstract/document/4104388

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* car_init_y (floar) — The initial y-position of the ego vehicle.

References
collision_detected()
Returns whether the current state is in the goal set.
Checks to see if any pedestrian’s position violates both the min_dist_x and min_dist_y constraints.
Returns bool — True if current state is in goal set.

get_ground_truth ()
Clones the ground truth simulator state.

Returns dict — A dictionary of simulator state variables.

log ()
Perform any logging steps.

move_car (car, accel)
Update the ego vehicle’s state.

Parameters
e car (array_like) — The ego vehicle’s state: [x-velocity, y-velocity, x-position, y-position].
* accel (floar) — The ago vehicle’s acceleration.

Returns array_like — An updated version of the ego vehicle’s state.

observe ()
Get the ground truth state of the pedestrian relative to the ego vehicle.

reset (s_0)
Resets the state of the environment, returning an initial observation.

Parameters s_0 (array_like) — The initial conditions to reset the simulator to.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

run_simulation (actions, s_0, simulation_horizon)
Run a full simulation given the AST solver’s actions and initial conditions.

Parameters

* actions (list[array_like]) — A sequential list of actions taken by the AST Solver which
deterministically control the simulation.

* s_0 (array_like) — An array specifying the initial conditions to set the simulator to.

 simulation_horizon (int) — The maximum number of steps a simulation rollout is allowed
to run.

Returns

¢ terminal_index (inf) — The index of the action that resulted in a state in the goal set E. If
no state is found terminal_index should be returned as -1.

* array_like — An array of relevant simulator info, which can then be used for analysis or
diagnostics.

sensors (peds, noise)
Get a noisy observation of the pedestrians’ locations and velocities.

102 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters
* peds (array_like) — Positions and velocities of the pedestrians.
* noise (array_like) — Noise to add to the positions and velocities of the pedestrians.

Returns array_like — Noisy observation of the pedestrians’ locations and velocities.

set_ground_truth (in_simulator_state)
Sets the simulator state variables.

Parameters in_simulator_state (dict) — A dictionary of simulator state variables.

step_simulation (action)
Handle anything that needs to take place at each step, such as a simulation update or write to file.

Parameters action (array_like) — A 1-D array of actions taken by the AST Solver which deter-
ministically control a single step forward in the simulation.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

tracker (estimate_old, measurements)
An alpha-beta filter to smooth noisy observations into an estimate of pedestrian state.

Parameters

* estimate_old (array_like) — The smoothed state estimate from the previous timestep.

* measurements (array_like) — The noisy observation of pedestrian state from the current
timestep.

Returns array_like — The smoothed state estimate of pedestrian state from the current timestep.

update_car (obs, v_car)
Calculate the ego vehicle’s acceleration.

Parameters
* obs (array_like) — Smoothed estimate of pedestrian state from the tracker.
* v_car (float) — Current velocity of the ego vehicle.

Returns float — The acceleration of the ego vehicle.

update_peds ()
Update the pedestrian’s state.

Submodules
ast_toolbox.simulators.ast_simulator module

Class template to wrap a simulator for interaction with AST.
class ast_toolbox.simulators.ast_simulator.ASTSimulator (blackbox_sim_state=True,
open_loop=True,
fixed_initial_state=True,
max_path_length=50)
Bases: object

Class template to wrap a simulator for interaction with AST.

This class already tracks the simulator options to return the correct observation type. In addition,

max_path_length and self._path_length are handled by this parent class.

9.1. ast_toolbox package

103

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters

* blackbox_sim_state (bool, optional) — True if the true simulation state can not be observed,
in which case actions and the initial conditions are used as the observation. False if the
simulation state can be observed, in which case it will be used.

* open_loop (bool, optional) — True if the simulation is open-loop, meaning that AST must
generate all actions ahead of time, instead of being able to output an action in sync with
the simulator, getting an observation back before the next action is generated. False to get
interactive control, which requires that blackbox_sim_state is also False.

* fixed_init_state (bool, optional) — True if the initial state is fixed, False to sample the initial
state for each rollout from the observaation space.

* max_path_length (int, optional) — Maximum length of a single rollout.

clone_state()
Clone the simulator state for later resetting.

This function is used in conjunction with restore_state for Go-Explore and Backwards Algorithm to do
their deterministic resets.

Returns array_like — An array of all the simulation state variables.

closed_loop_step (action)
User implemented function to step the simulation forward in time when closed-loop control is active.

This function should step the simulator forward a single timestep based on the given action. It will only be
called when open_loop is False. This function should always return self.observation_return().

Parameters action (array_like) — A 1-D array of actions taken by the AST Solver which deter-
ministically control a single step forward in the simulation.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

get_reward _info ()
Returns any info needed by the reward function to calculate the current reward.

is_goal()
Returns whether the current state is in the goal set. :returns: bool — True if current state is in goal set.

is_terminal ()
Returns whether rollout horizon has been reached. :returns: bool — True if rollout horizon has been reached.

log ()
perform any logging steps

observation_ return()
Helper function to return the correct observation based on settings.

Returns array_like — An observation from the timestep, which is either from the simulator if
open_loop is False and blackbox_sim_state is True, or else the initial conditions.

render (**kwargs)
Either renders a simulation scene or returns data used for external rendering.

Parameters kwargs — Keyword arguments used in the simulators render function.

reset (s_0)
Resets the state of the environment, returning an initial observation.

User implementations should always call the super class implementation. This function should always
return self.observation_return().

104 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

Parameters s_0 (array_like) — The initial conditions to reset the simulator to.

Returns array_like — An observation from the timestep, determined by the settings and the ob-
servation_return helper function.

restore_ state (in_simulator_state)
Reset the simulation deterministically to a previously cloned state.

This function is used in conjunction with clone_state for Go-Explore and Backwards Algorithm to do their
deterministic resets.

Parameters in_simulator_state (array_like) — An array of all the simulation state variables.

simulate (actions, s_0)
Run a full simulation given the AST solver’s actions and initial conditions.

simulate takes in the AST solver’s actions and the initial conditions. It should return two values: a terminal
index and an array of relevant simulation information.

Parameters

e actions (list/array_like]) — A sequential list of actions taken by the AST Solver which
deterministically control the simulation.

* s_0 (array_like) — An array specifying the initial conditions to set the simulator to.
Returns

* terminal_index (inf) — The index of the action that resulted in a state in the goal set E. If
no state is found terminal_index should be returned as -1.

e array_like — An array of relevant simulator info, which can then be used for analysis or
diagnostics.

step (action)
Step the simulation forward in time.

step takes in a the actions that deterministically control a single step forward in the simulation. It checks
to see if the rollout horizon has been reached, and then calls closed_loop_step if the simulation is set to
open_loop == False.

Parameters action (array_like) — A 1-D array of actions taken by the AST Solver which deter-
ministically control a single step forward in the simulation.

Returns array_like — An observation from the timestep, which is either from the simulator if
open_loop is False and blackbox_sim_state is True, or else the initial conditions.

ast_toolbox.spaces package

Action and State Spaces to formulate validation as an AST RL problem

class ast_toolbox.spaces.ASTSpaces
Bases: object

Class to define the action and observation spaces of an AST problem.
Both the action_space and the observation_space should be a gym.spaces.Space type.
The action_space is only used to clip actions if ASTEnv is wrapped by the normalize env.

If using ASTEnv with blackbox_sim_state == True, observation_space should define the space for each simula-
tion state variable. Otherwise, it should define the space of initial condition variables.

9.1. ast_toolbox package 105

https://gym.openai.com/docs/#spaces

AdaptiveStressTestingToolbox, Release 2020.09.01.0

class ast_toolbox.spaces.ExampleAVSpaces (num_peds=1,

If using ASTEnv with fixed_init_state == False, the initial conditions of each rollout will be randomly sampled
at uniform from the observation_space.

action_space
Returns a definition of the action space of the reinforcement learning problem.

Returns

gym.spaces.Space — The action space of the reinforcement learning problem.

observation_space
Returns a definition of the observation space of the reinforcement learning problem.

Returns

gym.spaces.Space — The observation space of the reinforcement learning problem.

max_path_length=>50,

v_des=11.17, x_accel_low=-1.0, y_accel_low=-
1.0, x_accel_high=1.0, y_accel_high=1.0,
x_boundary_low=-10.0, y_boundary_low=-10.0,
x_boundary_high=10.0, y_boundary_high=10.0,
x_v_low=-10.0, y_v_low=-10.0, x_v_high=10.0,
y_v_high=10.0, car_init_x=-35.0,

car_init_y=0.0, open_loop=True)

Bases: ast_toolbox.spaces.ast_spaces.ASTSpaces

Class to define the action and observation spaces for an example AV validation task.

Parameters

num_peds (int, optional) — The number of pedestrians crossing the street.

max_path_length (int, optional) — Maximum length of a single rollout.

v_des (float, optional) — The desired velocity, in meters per second, for the ego vehicle to

maintain

x_accel_low (float, optional) — The minimum x-acceleration of the pedestrian.
y_accel_low (float, optional) — The minimum y-acceleration of the pedestrian.
x_accel_high (float, optional) — The maximum x-acceleration of the pedestrian.
y_accel_high (float, optional) — The maximum y-acceleration of the pedestrian.
x_boundary_low (float, optional) — The minimum x-position of the pedestrian.

y_boundary_low (float, optional) — The minimum y-position of the pedestrian.

x_boundary_high (float, optional) — The maximum x-position of the pedestrian.

y_boundary_high (float, optional) — The maximum y-position of the pedestrian.

x_v_low (float, optional) — The minimum x-velocity of the pedestrian.
y_v_low (float, optional) — The minimum y-velocity of the pedestrian.
x_v_high (float, optional) — The maximum x-velocity of the pedestrian.
y_v_high (float, optional) — The maximum y-velocity of the pedestrian.
car_init_x (float, optional) — The initial x-position of the ego vehicle.

car_init_y (float, optional) — The initial y-position of the ego vehicle.

106

Chapter 9.

ast_toolbox

https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces

AdaptiveStressTestingToolbox, Release 2020.09.01.0

* open_loop (bool, optional) — True if the simulation is open-loop, meaning that AST must
generate all actions ahead of time, instead of being able to output an action in sync with
the simulator, getting an observation back before the next action is generated. False to get
interactive control, which requires that blackbox_sim_state is also False.

action_space
Returns a definition of the action space of the reinforcement learning problem.

Returns
gym.spaces.Space — The action space of the reinforcement learning problem.

observation_space
Returns a definition of the observation space of the reinforcement learning problem.

Returns

gym.spaces.Space — The observation space of the reinforcement learning problem.

Submodules
ast_toolbox.spaces.ast_spaces module

Class to define the action and observation spaces of an AST problem.

class ast_toolbox.spaces.ast_spaces.ASTSpaces
Bases: object

Class to define the action and observation spaces of an AST problem.
Both the action_space and the observation_space should be a gym.spaces.Space type.
The action_space is only used to clip actions if ASTEnv is wrapped by the normalize env.

If using ASTEnv with blackbox_sim_state == True, observation_space should define the space for each simula-
tion state variable. Otherwise, it should define the space of initial condition variables.

If using ASTEny with fixed_init_state == False, the initial conditions of each rollout will be randomly sampled
at uniform from the observation_space.

action_space
Returns a definition of the action space of the reinforcement learning problem.

Returns
gym.spaces.Space — The action space of the reinforcement learning problem.

observation_space
Returns a definition of the observation space of the reinforcement learning problem.

Returns

gym.spaces.Space — The observation space of the reinforcement learning problem.

ast_toolbox.spaces.example_av_spaces module

Class to define the action and observation spaces for an example AV validation task.

9.1. ast_toolbox package 107

https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces

AdaptiveStressTestingToolbox, Release 2020.09.01.0

class ast_toolbox.spaces.example_av_spaces.ExampleAVSpaces (num_peds=1,
max_path_length=>50,
v_des=11.17,
x_accel_low=-1.0,
y_accel_low=-1.0,
x_accel_high=1.0,
y_accel_high=1.0,
x_boundary_low=-
10.0,
y_boundary_low=-
10.0,
x_boundary_high=10.0,
y_boundary_high=10.0,
x_v_low=-10.0,
y_v_low=-10.0,
x_v_high=10.0,
y_v_high=10.0,
car_init_x=-35.0,
car_init_y=0.0,
open_loop=True)
Bases: ast_toolbox.spaces.ast_spaces.ASTSpaces
Class to define the action and observation spaces for an example AV validation task.
Parameters
* num_peds (int, optional) — The number of pedestrians crossing the street.
» max_path_length (int, optional) — Maximum length of a single rollout.

* v_des (float, optional) — The desired velocity, in meters per second, for the ego vehicle to
maintain

* x_accel_low (float, optional) — The minimum x-acceleration of the pedestrian.

* y_accel_low (float, optional) — The minimum y-acceleration of the pedestrian.

* x_accel_high (float, optional) — The maximum x-acceleration of the pedestrian.
* y_accel_high (float, optional) — The maximum y-acceleration of the pedestrian.
* x_boundary_low (float, optional) — The minimum x-position of the pedestrian.
* y_boundary_low (float, optional) — The minimum y-position of the pedestrian.
* x_boundary_high (float, optional) — The maximum x-position of the pedestrian.
* y_boundary_high (float, optional) — The maximum y-position of the pedestrian.
* x_v_low (float, optional) — The minimum x-velocity of the pedestrian.

* y_v_low (float, optional) — The minimum y-velocity of the pedestrian.

* x_v_high (float, optional) — The maximum x-velocity of the pedestrian.
 y_v_high (float, optional) — The maximum y-velocity of the pedestrian.

* car_init_x (float, optional) — The initial x-position of the ego vehicle.

e car_init_y (float, optional) — The initial y-position of the ego vehicle.

* open_loop (bool, optional) — True if the simulation is open-loop, meaning that AST must
generate all actions ahead of time, instead of being able to output an action in sync with

108 Chapter 9. ast_toolbox

AdaptiveStressTestingToolbox, Release 2020.09.01.0

the simulator, getting an observation back before the next action is generated. False to get
interactive control, which requires that blackbox_sim_state is also False.

action_space
Returns a definition of the action space of the reinforcement learning problem.

Returns gym.spaces.Space — The action space of the reinforcement learning problem.

observation_space
Returns a definition of the observation space of the reinforcement learning problem.

Returns

gym.spaces.Space — The observation space of the reinforcement learning problem.

ast_toolbox.utils package

Utility functions for running and analyzing AST problems

Submodules
ast_toolbox.utils.analysis_utils module

ast_toolbox.utils.analysis_utils.render_itr_heatmap (samples_data, Visit_counts,
fig=None, ax=None)

ast_toolbox.utils.analysis_utils.render_paths (filepath, gif file=None)

ast_toolbox.utils.analysis_utils.render_paths_heatmap_gif (filepath, gif file=None,
frames=10)

ast_toolbox.utils.exp_utils module

ast_toolbox.utils.exp_utils.log_mean_exp (x, dim)
Compute the log(mean(exp(x), dim)) in a numerically stable manner

ast_toolbox.utils.exp_utils.log_sum exp (x, dim)
Compute the log(sum(exp(x), dim)) in a numerically stable manner

ast_toolbox.utils.exp_utils.softmax (x, dim)
Compute softmax values for each sets of scores in x along dim

ast_toolbox.utils.ga_argparser module

ast_toolbox.utils.ga_argparser.get_ga_parser (log_dir="./")

ast_toolbox.utils.go_explore_utils module

ast_toolbox.utils.go_explore_utils.convert_drl_itr data_to_expert_trajectory (last_iter_data)

ast_toolbox.utils.go_explore_utils.convert_mcts_itr data_to_expert_trajectory (best_actions,
sim,
s_0,
re-
ward_function)

9.1. ast_toolbox package 109

https://gym.openai.com/docs/#spaces
https://gym.openai.com/docs/#spaces

AdaptiveStressTestingToolbox, Release 2020.09.01.0

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.go_explore_utils.

ast_toolbox.utils.mcts_utils module

class ast_toolbox.utils.mcts_utils.
Bases: object

class ast_toolbox.utils.mcts_utils.
Bases: object

class ast_toolbox.utils.mcts_utils.
Bases: object

get_cellpool (filename, dbname=None, db-

type=<sphinx.ext.autodoc.importer._MockObject

object>,

flags=<sphinx.ext.autodoc.importer._MockObject

object>, protocol=4)

get_meta_filename (filename)
get_metadata (filename)
get_pool_filename (filename)

get_root_cell (pool, cell)

load_convert_and_save_drl_expert_trajectory (last_iter_filenam

ex-
pert_trajectory_J

load_convert_and_save_mcts_expert_trajectory (best_actions_fil

plot_goal_trajectories (filename,
goal_limit=None,
sort_by_reward=False)

plot_terminal_trajectories (filename, termi-
nal_limit=None,
sort_by_reward=False)
plot_trajectories (filename, plot_terminal=True,
plot_goal=True, ter-
minal_limit=None,
goal_limit=None,
sort_by_reward=False)

render (car=None, ped=None, noise=None,

ped_obs=None, gif=False)

StateActionNode

StateActionStateNode

StateNode

110

Chapter 9. ast_toolbox

ex-
pert_trajectory.
sim,

s 0,

re-
ward_function)

AdaptiveStressTestingToolbox, Release 2020.09.01.0

ast_toolbox.utils.np_weight_init module

ast_toolbox.utils.np_weight_init.init_param np (param, policy, np_random=<module
‘numpy.random’ from
"/home/docs/checkouts/readthedocs.org/user_builds/ast-
toolbox/envs/latest/lib/python3.7/site-
packages/numpy/random/__init__.py’>)

ast_toolbox.utils.np_weight_init.init_policy_ np (policy, np_random=<module
‘numpy.random’ from
"/home/docs/checkouts/readthedocs.org/user_builds/ast-
toolbox/envs/latest/lib/python3.7/site-
packages/numpy/random/__init__.py’>)

ast_toolbox.utils.seeding module

ast_toolbox.utils.seeding.create_seed (a=None, max_bytes=8)
Create a strong random seed. Otherwise, Python 2 would seed using the system time, which might be non-robust
especially in the presence of concurrency.

Args: a (Optional[int, str]): None seeds from an operating system specific randomness source. max_bytes:
Maximum number of bytes to use in the seed.

ast_toolbox.utils.seeding.hash_seed (seed=None, max_bytes=38)
Any given evaluation is likely to have many PRNG’s active at once. (Most commonly, because the environment
is running in multiple processes.) There’s literature indicating that having linear correlations between seeds of
multiple PRNG’s can correlate the outputs:

http://blogs.unity3d.com/2015/01/07/a-primer-on-repeatable-random-numbers/ http://stackoverflow.com/
questions/1554958/how-different-do-random-seeds-need-to-be http://dl.acm.org/citation.cfm?id=1276928

Thus, for sanity we hash the seeds before using them. (This scheme is likely not crypto-strength, but it should
be good enough to get rid of simple correlations.)

Args: seed (Optional[int]): None seeds from an operating system specific randomness source. max_bytes:
Maximum number of bytes to use in the hashed seed.

ast_toolbox.utils.seeding.np_random (seed=None)

ast_toolbox.utils.tree_plot module

ast_toolbox.utils.tree_plot.add_children (s, s_node, tree, graph, d)
ast_toolbox.utils.tree_plot.get_node_num_next (s, tree, depths, nodeNums, d)
ast_toolbox.utils.tree_plot.get_root (free)
ast_toolbox.utils.tree_plot.plot_node_num (tree, path, format="svg’)
ast_toolbox.utils.tree_plot.plot_tree (tree, d, path, format="svg’)

ast_toolbox.utils.tree_plot.s2node (s, tree)

9.1. ast_toolbox package 111

http://blogs.unity3d.com/2015/01/07/a-primer-on-repeatable-random-numbers/
http://stackoverflow.com/questions/1554958/how-different-do-random-seeds-need-to-be
http://stackoverflow.com/questions/1554958/how-different-do-random-seeds-need-to-be
http://dl.acm.org/citation.cfm?id=1276928

AdaptiveStressTestingToolbox, Release 2020.09.01.0

112 Chapter 9. ast_toolbox

cHAaPTER 10

Indices and tables

* genindex
* modindex

e search

113

AdaptiveStressTestingToolbox, Release 2020.09.01.0

114 Chapter 10. Indices and tables

Python Module Index

a ast_toolbox.samplers, 85
ast_toolbox, 39 ast_toolbox.samplers.ast_vectorized_sampler,
ast_toolbox.algos, 39 88
ast_toolbox.algos.backward_algorithm, ast_toolbox.samplers.batch_sampler, 89

46 ast_toolbox.samplers.parallel_sampler
ast_toolbox.algos.ga, 48 90
ast_toolbox.algos.gasm, 50 ast_toolbox.simulators, 91
ast_toolbox.algos.go_explore, 51 ast_toolbox.simulators.ast_simulator,
ast_toolbox.algos.mcts, 56 103
ast_toolbox.algos.mctsbv, 57 ast_toolbox.simulators.example_av_simulator,
ast_toolbox.algos.mctsrs, 57 95
ast_toolbox.envs, 58 ast_toolbox.simulators.example_av_simulator.example
ast_toolbox.envs.ast_env, 63 99
ast_toolbox.envs.go_explore_ast_env, 65 ast_toolbox.simulators.example_av_simulator.toy_av.
ast_toolbox.mcts, 69 100
ast_toolbox.mcts.AdaptiveStressTesting, ast_toolbox.spaces, 105

71 ast_toolbox.spaces.ast_spaces, 107
ast_toolbox.mcts.AdaptiveStressTestingBl2#abvhpaébox.spaces.example_av_spaces,

73 107
ast_toolbox.mcts.AdaptiveStressTestingRaﬁﬁBm@@@ébox-utils’109

74 ast_toolbox.utils.analysis_utils, 109
ast_toolbox.mcts.AST_MCTS, 70 ast_toolbox.utils.exp_utils, 109
ast_toolbox.mcts.ASTSim, 69 ast_toolbox.utils.ga_argparser, 109
ast_toolbox.mcts.BoundedPriorityQueues, ast_toolbox.utils.go_explore utils, 109

75 ast_toolbox.utils.mcts_utils, 110
ast_toolbox.mcts.MCTSdpw, 75 ast_toolbox.utils.np_weight_init, 111
ast_toolbox.mcts.MDP, 77 ast_toolbox.utils.seeding, 111
ast_toolbox.mcts.RNGWrapper, 78 ast_toolbox.utils.tree_plot, 111

ast_toolbox.mcts.tree_plot, 78

ast_toolbox.optimizers, 79

ast_toolbox.optimizers.direction_constraint_optimizer,
80

ast_toolbox.policies, 8l

ast_toolbox.policies.go_explore_policy,
82

ast_toolbox.rewards, 83

ast_toolbox.rewards.ast_reward, 84

ast_toolbox.rewards.example_av_reward,
85

115

AdaptiveStressTestingToolbox, Release 2020.09.01.0

116 Python Module Index

Index

A

AcionSequence (class in ast_toolbox.mcts.ASTSim),
69

action_seq policy () (in module
ast_toolbox.mcts.ASTSim), 69

action_space (ast_toolbox.envs.ast_env.ASTEnv at-

tribute), 65
action_space (ast_toolbox.envs.ASTEnv attribute),
63

ast_toolbox.
ast_toolbox.
ast_toolbox.
ast_toolbox.
ast_toolbox.
ast_toolbox.

.gasm (module), 50
.go_explore (module), 51
.mcts (module), 56
algos.mctsbv (module), 57
algos.mctsrs (module), 57
envs (module), 58
ast_toolbox.envs.ast_env (module), 63
ast_toolbox.envs.go_explore_ast_env
(module), 65

algos
algos
algos

action_space (ast_toolbox.envs.go_explore_ast_env.GoESHloteASFER: - MCt s (module), 69

attribute), 68
action_space (ast_toolbox.envs.GoExploreASTEnv
attribute), 61

action_space (ast_toolbox.spaces.ast_spaces.ASTSpaces

attribute), 107
action_space (ast_toolbox.spaces.ASTSpaces at-
tribute), 106

action_space (ast_toolbox.spaces.example_av_spaces. BxeimptVSp@cesmet s

attribute), 109
action_space (ast_toolbox.spaces.ExampleAVSpaces
attribute), 107

AdaptiveStressTest (class in
ast_toolbox.mcts.AdaptiveStressTesting),
71

AdaptiveStressTestBV (class in

ast_toolbox.mcts.AdaptiveStressTestingBlindValué},S t—t ©0 lbox.

73
AdaptiveStressTestRS

(class in

ast_toolbox.mcts
(module), 71
ast_toolbox.mcts
(module), 73
ast_toolbox.mcts
(module), 74
ast_toolbox.mcts

.AdaptiveStressTesting
.AdaptiveStressTestingBlindValue
.AdaptiveStressTestingRandomSeed

.AST_MCTS (module), 70
.ASTSim (module), 69

ast_toolbox.mcts.BoundedPriorityQueues

(module), 75

ast_toolbox.mcts
ast_toolbox.
ast_toolbox.
ast_toolbox.

ast_toolbox.

.MCTSdpw (module), 75

.MDP (module), 77

mcts.RNGWrapper (module), 78

mcts.tree_plot (module), 78

optimizers (module), 79

optimizers.direction_constraint_optimi:
(module), 80

ast_toolbox.policies (module), 81

mcts

ast_toolbox.mcts.AdaptiveStressTestingRandomSedd)-—t 001box.policies.go_explore_policy

74
add_children () (in module
ast_toolbox.mcts.tree_plot), 78
add_children () (in
ast_toolbox.utils.tree_plot), 111
ast_toolbox (module), 39
ast_toolbox.algos (module), 39
ast_toolbox.algos.backward_algorithm
(module), 46
ast_toolbox.algos.ga (module), 48

module

(module), 82
ast_toolbox.rewards (module), 83
ast_toolbox.rewards.ast_reward

84
ast_toolbox.rewards.example_av_reward

(module), 85
ast_toolbox.samplers (module), 85
ast_toolbox.samplers.ast_vectorized_sampler

(module), 88
ast_toolbox.samplers.batch_sampler (mod-

ule), 89

(module),

117

AdaptiveStressTestingToolbox, Release 2020.09.01.0

ast_toolbox.samplers.parallel_sampler ast_toolbox.samplers.ast_vectorized_sampler),
(module), 90 88
ast_toolbox.simulators (module), 91
ast_toolbox.simulators.ast_simulator B
(module), 103 BackwardAlgorithm (class in ast_toolbox.algos), 45
ast_toolbox.simulators.example_av_simulaBactkwardAlgorithm (class in
(module), 95 ast_toolbox.algos.backward_algorithm),
ast_toolbox.simulators.example_av_simulator.exaffple_av_simulator
(module), 99 BatchSampler (class in ast_toolbox.samplers), 87
ast_toolbox.simulators.example_av_simulaBatchSgmp¥esimulator (class in
(module), 100 ast_toolbox.samplers.batch_sampler), 89
ast_toolbox.spaces (module), 105 BoundedPriorityQueue (class in
ast_toolbox.spaces.ast_spaces (module), ast_toolbox.mcts.BoundedPriorityQueues),
107 75
ast_toolbox.spaces.example_av_spaces
(module). 107 C
ast_toolbox.utils (module), 109 Cell (class in ast_toolbox.algos.go_explore), 51
ast_toolbox.utils.analysis_utils (mod- cellPool (class in ast_toolbox.algos.go_explore), 53
ule), 109 clone_state () (ast_toolbox.simulators.ast_simulator.ASTSimulator
ast_toolbox.utils.exp_utils (module), 109 method), 104
ast_toolbox.utils.ga_argparser (module), clone_state () (ast_toolbox.simulators.ASTSimulator
109 method), 92
ast_toolbox.utils.go_explore_utils (mod- clone_state () (ast_toolbox.simulators.example_av_simulator.example
ule), 109 method), 99
ast_toolbox.utils.mcts_utils (module), 110 clone_state () (ast_toolbox.simulators.example_av_simulator. Example
ast_toolbox.utils.np_weight_init (mod- method), 98
ule), 111 clone_state () (ast_toolbox.simulators. ExampleAVSimulator
ast_toolbox.utils.seeding (module), 111 method), 93
ast_toolbox.utils.tree_plot (module), 111 close () (ast_toolbox.envs.ast_env.ASTEnv method), 64
ASTAction (class in close () (ast_toolbox.envs.ASTEnv method), 62
ast_toolbox.mcts.AdaptiveStressTesting), close () (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv
71 method), 66
ASTEnv (class in ast_toolbox.envs), 61 close () (ast_toolbox.envs.GoExploreASTEny method),
ASTEnNv (class in ast_toolbox.envs.ast_env), 63 58
ASTParams (class in close() (in module
ast_toolbox.mcts.AdaptiveStressTesting), ast_toolbox.samplers.parallel_sampler),
71 90
ASTReward (class in ast_toolbox.rewards), 83 close_pool () (ast_toolbox.algos.go_explore.CellPool
ASTReward (class in ast_toolbox.rewards.ast_reward), method), 53
84 closed_loop_step ()
ASTRSAction (class in (ast_toolbox.simulators.ast_simulator.ASTSimulator
ast_toolbox.mcts.AdaptiveStressTestingRandomSeed), method), 104
74 closed_loop_step()
ASTSimulator (class in ast_toolbox.simulators), 91 (ast_toolbox.simulators.ASTSimulator
ASTSimulator (class in method), 92
ast_toolbox.simulators.ast_simulator), 103 closed_loop_step ()
ASTSpaces (class in ast_toolbox.spaces), 105 (ast_toolbox.simulators.example_av_simulator.example_av_simu
ASTSpaces (class in ast_toolbox.spaces.ast_spaces), method), 99
107 closed_loop_step ()
ASTState (class in ast_toolbox.mcts.AdaptiveStressTesting), (ast_toolbox.simulators.example_av_simulator. ExampleAVSimula
71 method), 98
ASTVectorizedSampler (class in closed_loop_step ()
ast_toolbox.samplers), 85 (ast_toolbox.simulators. ExampleAVSimulator
ASTVectorizedSampler (class in method), 94

118 Index

AdaptiveStressTestingToolbox, Release 2020.09.01.0

collision_detected() downsample () (ast_toolbox.envs.go_explore_ast_env.Custom_GoExplor
(ast_toolbox.simulators.example_av_simulator.toy_av_simulnedhddyA5Simulator
method), 102 downsample () (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEn
collision_detected() method), 66
(ast_toolbox.simulators.example_av_simulator. Toy@MSirmabatore () (ast_toolbox.envs.GoExploreASTEnv
method), 96 method), 59
constraint_val () (ast_toolbox.optimizers.direction_comstivatdedptinise ibastctiomlConstatsnbOpTiSdgen, 75
method), 80 DPWParams (class in ast_toolbox.mcts. MCTSdpw), 75

convert_drl_itr_data_to_expert_trajectorbPRWTree (class in ast_toolbox.mcts. MCTSdpw), 76
(in module ast_toolbox.utils.go_explore_utils),

109
convert_mcts_itr_data_to_expert_trajectogxgty () (ast_toolbox.mcts.BoundedPriorityQueues.BoundedPriorityQue
(in module ast_toolbox.utils.go_explore_utils), method), 75
109 enqueue () (ast_toolbox.mcts.BoundedPriorityQueues.BoundedPriority(
count_subscores (ast_toolbox.algos.go_explore.Cell method), 75
attribute), 51 env_reset () (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv
create_seed () (inmodule ast_toolbox.utils.seeding), method), 66
111 env_reset () (ast_toolbox.envs.GoExploreASTEnv
Custom_GoExploreASTEnv (class in method), 59
ast_toolbox.envs), 61 ExampleAVReward (class in ast_toolbox.rewards), 84
Custom_GoExploreASTEnv (class in ExampleAVReward (class in
ast_toolbox.envs.go_explore_ast_env), 65 ast_toolbox.rewards.example_av_reward),
85
D ExampleAVSimulator (class in
d_update () (ast_toolbox.algos.go_explore.CellPool ast_toolbox.simulators), 93
method), 53 ExampleAVSimulator (class in
data2inputs () (ast_toolbox.algos. GASM method), ast_toolbox.simulators.example_av_simulator),
42 97
data2inputs () (ast_toolbox.algos.gasm.GASM ExampleAVSimulator (class in
method), 51 ast_toolbox.simulators.example_av_simulator.example_av_simul
delete_pool () (ast_toolbox.algos.go_explore.CellPool 99
method), 54 ExampleAVSpaces (class in ast_toolbox.spaces), 106
DirectionConstraintOptimizer (class in ExampleAVSpaces (class in
ast_toolbox.optimizers.direction_constraint_optimizer), ast_toolbox.spaces.example_av_spaces),
80 107
dist_info () (ast_toolbox.policies.go_explore_policy. GoFaploweRoliext ion () (ast_toolbox.mcts.AdaptiveStressTesting. AdaptiveS
method), 82 method), 72
dist_info () (ast_toolbox.policies.GoExplorePolicy explore_action () (ast_toolbox.mcts.AdaptiveStressTestingBlindValue
method), 81 method), 73
dist_info_sym() (ast_toolbox.policies.go_explore_polécxiodnplozeRolioy () (ast_toolbox.mcts.AdaptiveStressTestingRandomSe
method), 83 method), 74
dist_info_sym() (ast_toolbox.policies.GoExplorePolicyxplore_getAction () (in module
method), 81 ast_toolbox.mcts. AST_MCTS), 70
distribution (ast_toolbox.policies.go_explore_policy. GofxpbreRodicy ding () (ast_toolbox.algos.GA
attribute), 83 method), 40
distribution (ast_toolbox.policies.GoExplorePolicy extra_recording () (ast_toolbox.algos.ga.GA
attribute), 82 method), 49
downsample () (ast_toolbox.algos.go_explore. GoExploreextra_recording () (ast_toolbox.algos. GASM
method), 55 method), 42
downsample () (ast_toolbox.algos.GoExplore extra_recording /()
method), 44 (ast_toolbox.algos.gasm.GASM method),
downsample () (ast_toolbox.envs.Custom_GoExploreASTEnv 51
method), 61

Index 119

AdaptiveStressTestingToolbox, Release 2020.09.01.0

F get_itr_snapshot () (ast_toolbox.algos.GA
fitness (ast_toolbox.algos.go_explore.Cell attribute), method), 40
52 get_itr_snapshot () (ast_toolbox.algos.ga.GA
method), 49
G get_itr_snapshot ()
GA (class in ast_toolbox.algos), 39 (ast_toolbox.algos.go_explore.GoExplore
- method), 55

GA (class in ast_toolbox.algos.ga), 48

GASM (class in ast_toolbox.algos), 41 get_itr_snapshot ()
GASM (class in ast_toolbox.algos.gasm), 50 (ast_toolbox.algos.GoExplore method), 44

get () (ast_toolbox.mcts.AdaptiveStressTesting. ASTAction get_magnitude () (ast_toolbox.optimizers.direction_constraint_optimi

method), 71 method), 80
get () (ast_toolbox.mcts.AdaptiveStressTestingRandomSeeg.%m@zféaﬁﬂ%llenam? 0 (in . module
method), 74 ast_toolbox.utils.go_explore_utils), 110
get_action () (ast_toolbox.policies.go_explore_policy. CEExploFePsiey e O (in . module
method), 83 ast_toolbox.utils.go_explore_utils), 110
get_action () (ast_toolbox.policies.GoExplorePolicy get_next_epoch () (ast_toolbox.algos.backward_algorithm.Backward.
method), 82 method), 47
get_action_sequence () (in module 9€t_next_epoch () (asi_toolbox.algos.BackwardAlgorithm
ast_toolbox.mcts.AdaptiveStressTesting), method), 46 .
73 get_node_num_next () (in module
get_actions () (ast_toolbox.policies.go_explore _policy.GoExplor@ﬁef%}box'“”ls'” ee_plor), 111
method), 83 get_param_values ()
get_actions () (ast_toolbox.policies.GoExplorePolicy (ast_toolng.envs. go_explore_ast_env.GoExploreASTEny
method), 82 method), 66
get_cache_list () (ast_toolbox.envs.go_explore_ast_e%ﬁ80@%3%‘5‘?%%S 0
method), 66 (ast_toolbox.envs.GoExploreASTEnv method),
get_cache_list () (ast_toolbox.envs.GoExploreASTEny 59)
method), 59 get_params () (ast_toolbox.envs.go_explore_ast_env.Parameterized
get_cellpool () (in module method), 69

get_params_internal ()

ast_toolbox.utils.go_explore_utils), 110
(ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv

get_first_action()
(ast_toolbox.simulators.example_av_simulator.example_a v_’?ﬁﬂiﬁdt)a r@g"xampleAVS imulator
method), 100 get_params_internal ()

get_first_action () (ast_toolbox.envs.go_explore_ast_env.Parameterized

(ast_toolbox.simulators. example_av_simulator.ExampleAVS’??ﬁff?ﬁﬂ)V 69
method), 98 get_params_internal ()

get_first_action () (ast_toolbox.envs.GoExploreASTEnv method),

(ast_toolbox.simulators. ExampleAVSimulator 59)
method), 94 get_pool_filename () (in module
get_first_cell () (ast_toolbox.envs.go_explore_ast_env. GoExpﬁffeA%OI%%' utils.go_explor e_utll?"), 110 . .
method), 66 get_reward () (ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressT
get_first_cell () (ast_toolbox.envs.GoExploreASTEny method), 72
method), 59 get_reward_info ()
get_fitness () (ast_toolbox.algos.GA method), 40 (ast_toolbox.simulators.ast_simulator.ASTSimulator
get_fitness () (ast_toolbox.algos.ga.GA method), method), 104
49 get_reward_info ()
get_ga_parser () (in module (ast_toolbox.simulators.ASTSimulator
ast_toolbox.utils.ga_argparser), 109 method), 92

get_ground_truth () get_reward_info ()
(ast_toolbox.simulators.example_av_simulator.toy_av_simu#b RoXHimgsprs-example_av_simulator.example_av_simu
method), 102 method),

get_ground_truth () get_reward_info ()

(ast_toolbox.simulators.example_av_simulator. ToyAVSimul C{fbsrt_toolbox. simulators.example_av_simulator. ExampleAVSimula
method), 96 method), 98

120 Index

AdaptiveStressTestingToolbox, Release 2020.09.01.0

get_reward_info () init_opt () (ast_toolbox.algos.gasm.GASM method),
(ast_toolbox.simulators. ExampleAVSimulator 51
method), 94 init_opt () (ast_toolbox.algos.go_explore.GoExplore
get_root () (in module ast_toolbox.mcts.tree_plot), method), 55
79 init_opt () (ast_toolbox.algos.GoExplore method),
get_root () (in module ast_toolbox.utils.tree_plot), 45
111 init_param_np () (in module
get_root_cell() (in module ast_toolbox.utils.np_weight _init), 111
ast_toolbox.utils.go_explore_utils), 110 init_policy_np () (in module
get_value () (ast_toolbox.envs.go_explore_ast_env.GoExploreParastetevlbox.utils.np_weight _init), 111
method), 69 initial () (ast_toolbox.algos.GA method), 40
getBV () (ast_toolbox.mcts.AdaptiveStressTesting BlindValueaAdapaiveSthgsstlasiBBbox.algos.ga. GA method), 49
method), 73 initialize () (ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressT
getDistance () (ast_toolbox.mcts.AdaptiveStressTesting BlindValumAuhaplyyéStressTestBV
method), 74 initialize () (in module
getUCB () (ast_toolbox.mcts.AdaptiveStressTestingBlindValue.AdaptiseStwosbbessBMplers.parallel_sampler),
method), 74 90
give_reward () (ast_toolbox.rewards.ast_reward. ASTRewmrdyoal (ast_toolbox.algos.go_explore.Cell attribute),
method), 84 52
give_reward() (ast_toolbox.rewards.ASTReward is_goal () (ast_toolbox.simulators.ast_simulator.ASTSimulator
method), 83 method), 104
give_reward () (ast_toolbox.rewards.example_av_rewardsExgawle@VRewduakt_toolbox.simulators.ASTSimulator
method), 85 method), 92
give_reward () (ast_toolbox.rewards.ExampleAVReward s_goal () (ast_toolbox.simulators.example_av_simulator.example_av_s
method), 84 method), 100
GoExplore (class in ast_toolbox.algos), 44 is_goal () (ast_toolbox.simulators.example_av_simulator. ExampleAVSir
GoExplore (class in ast_toolbox.algos.go_explore), 55 method), 98
GoExploreASTEnv (class in ast_toolbox.envs), 58 is_goal () (ast_toolbox.simulators.ExampleAVSimulator
GoExploreASTEnv (class in method), 94
ast_toolbox.envs.go_explore_ast_env), 65 is_root (ast_toolbox.algos.go_explore.Cell attribute),
GoExploreParameter (class in 52
ast_toolbox.envs.go_explore_ast_env), 68 is_terminal (ast_toolbox.algos.go_explore.Cell at-
GoExplorePolicy (class in ast_toolbox.policies), 81 tribute), 52
GoExplorePolicy (class in is_terminal () (ast_toolbox.simulators.ast_simulator.ASTSimulator
ast_toolbox.policies.go_explore_policy), method), 104
82 is_terminal () (ast_toolbox.simulators. ASTSimulator
method), 92
H isempty () (ast_toolbox.mcts.BoundedPriorityQueues. BoundedPriority(
hash_seed () (in module ast_toolbox.utils.seeding), method), 75
111 isterminal () (ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressT
haskey () (ast_toolbox.mcts.BoundedPriorityQueues. BoundedPrioringhaedie 72
method), 75

L

I length () (ast_toolbox.mcts.BoundedPriorityQueues.BoundedPriorityQu

init () (ast_toolbox.algos.MCTS method), 43 method), 75
init () (ast_toolbox.algos.mcts. MCTS method), 57 length () (ast_toolbox.mcts. RNGWrapper.RSG
init () (ast_toolbox.algos. MCTSBV method), 43 method), 78
init () (ast_toolbox.algos.mctsbv.MCTSBV method), load () (ast_toolbox.algos.go_explore.CellPool

57 method), 54
init () (ast_toolbox.algos. MCTSRS method), 44 load_convert_and_save_drl_expert_trajectory ()
init () (ast_toolbox.algos.mctsrs. MCTSRS method), 58 (in module ast_toolbox.utils.go_explore_utils),
init_opt () (ast_toolbox.algos.GA method), 40 110
init_opt () (ast_toolbox.algos.ga.GA method), 49 load_convert_and_save_mcts_expert_trajectory ()
init_opt () (ast_toolbox.algos. GASM method), 42 (in module ast_toolbox.utils.go_explore_utils),

Index 121

AdaptiveStressTestingToolbox, Release 2020.09.01.0

110 mutation () (ast_toolbox.algos.gasm.GASM method),
log () (ast_toolbox.envs.ast_env.ASTEnv method), 64 51
log () (ast_toolbox.envs.ASTEnv method), 62
log () (ast_toolbox.envs.go_explore_ast_env.GoExploreAS Nnv

method), 67 next () (ast_toolbox.mcts. RNGWrapper.RSG method),
log () (ast_toolbox.envs.GoExploreASTEnv method), 59 78
log () (ast_toolbox.simulators.ast_simulatorASTSimulatomp_random () (in module ast_toolbox.utils.seeding),
method), 104 111
log () (ast_toolbox.simulators.ASTSimulator method),
92
log () (ast_toolbox.simulators.example_av_simulator.examples ay~simulgtorExampledySimulator
method), 100 (ast_toolbox.simulators.ast_simulator.ASTSimulator
log () (ast_toolbox.simulators.example_av_simulator. ExampleAVSimulbaleid), 104
method), 98 observation_return ()
log () (ast_toolbox.simulators.example_av_simulator.toy_av_simulatesd apdYbvxsiaiatitors. ASTSimulator
method), 102 method), 92
log () (ast_toolbox.simulators.example_av_simulator. ToyAYSmadeiar i on_space
method), 96 (ast_toolbox.envs.ast_env.ASTEnv attribute),
log () (ast_toolbox.simulators. ExampleAVSimulator 65
method), 94 observation_space (ast_toolbox.envs.ASTEnv at-
log_diagnostics () tribute), 63
(ast_toolbox.policies.go_explore_policy.GoExplorgBdlicyvation_s pace
method), 83 (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv
log_diagnostics () attribute), 638
(ast_toolbox.policies. GoExplorePolicy observation_space
method), 82 (ast_toolbox.envs.GoExploreASTEny attribute),
log_mean_exp () (in module 61
ast_toolbox.utils.exp_utils), 109 observation_space
log_sum_exp () (in module (ast_toolbox.spaces.ast_spaces.ASTSpaces
ast_toolbox.utils.exp_utils), 109 attribute), 107
logging () (ast_toolbox.mcts.AdaptiveStressTesting. AdapgyeSsreselesion_space
method), 72 (ast_toolbox.spaces.ASTSpaces attribute),
106
M observation_space
mahalanobis_d () (ast_toolbox.rewards.example_av_reward. Exarpdt AVBIboarspaces.example_av_spaces.ExampleAVSpaces
method), 85 attribute), 109
mahalanobis_d () (ast_toolbox.rewards.ExampleAVRewslndervation_space
method), 84 (ast_toolbox.spaces.ExampleAVSpaces at-
MCTS (class in ast_toolbox.algos), 42 tribute), 107
MCTS (class in ast_toolbox.algos.mcts), 56 observe () (ast_toolbox.simulators.example_av_simulator.toy_av_simulc
MCTSBV (class in ast_toolbox.algos), 43 method), 102
MCTSBV (class in ast_toolbox.algos.mctsbv), 57 observe () (ast_toolbox.simulators.example_av_simulator. ToyAVSimulat
MCTSRS (class in ast_toolbox.algos), 43 method), 96
MCTSRS (class in ast_toolbox.algos.mctsrs), 57 obtain_samples () (ast_toolbox.algos.GA method),
meta_filename (ast_toolbox.algos.go_explore.CellPool 41
attribute), 54 obtain_samples () (ast_toolbox.algos.ga.GA
move_car () (ast_toolbox.simulators.example_av_simulator.toy_av mathddyo#PoyAVSimulator
method), 102 obtain_samples () (ast_toolbox.samplers.ast_vectorized_sampler.AST
move_car () (ast_toolbox.simulators.example_av_simulator. ToyAVSimathathy 88
method), 96 obtain_samples () (ast_toolbox.samplers.ASTVectorizedSampler
mutation () (ast_toolbox.algos.GA method), 40 method), 86
mutation () (ast_toolbox.algos.ga.GA method), 49 obtain_samples () (ast_toolbox.samplers.batch_sampler. BatchSample
mutation () (ast_toolbox.algos.GASM method), 42 method), 90

122 Index

AdaptiveStressTestingToolbox, Release 2020.09.01.0

obtain_samples () (ast_toolbox.samplers.BatchSamplerender () (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv

method), 87
open_pool () (ast_toolbox.algos.go_explore.CellPool
method), 54
optimize_policy ()
method), 41
optimize_policy ()
method), 50
optimize_policy ()
(ast_toolbox.algos.go_explore.GoExplore

(ast_toolbox.algos.GA

(ast_toolbox.algos.ga.GA

method), 55
optimize_policy () (ast_toolbox.algos.GoExplore
method), 45
P
Parameterized (class in
ast_toolbox.envs.go_explore_ast_env), 69
play_sequence () (in module
ast_toolbox.mcts.ASTSim), 70
plot_goal_trajectories|() (in module
ast_toolbox.utils.go_explore_utils), 110
plot_node_num/() (in module

ast_toolbox.utils.tree_plot), 111
plot_terminal_trajectories() (in module
ast_toolbox.utils.go_explore_utils), 110
plot_trajectories|() (in module
ast_toolbox.utils.go_explore_utils), 110
plot_tree () (in module ast_toolbox.mcts.tree_plot),
79
plot_tree () (in module ast_toolbox.utils.tree_plot),

method), 67

render () (ast_toolbox.envs.GoExploreASTEnv
method), 59

render () (ast_toolbox.simulators.ast_simulator.ASTSimulator
method), 104

render () (ast_toolbox.simulators. ASTSimulator
method), 92

render () (in module
ast_toolbox.utils.go_explore_utils), 110

render_itr_heatmap () (in module
ast_toolbox.utils.analysis_utils), 109

render_paths () (in module
ast_toolbox.utils.analysis_utils), 109

render_paths_heatmap_gif () (in module

ast_toolbox.utils.analysis_utils), 109
reset () (ast_toolbox.envs.ast_env.ASTEnv method), 64
reset () (ast_toolbox.envs.ASTEnv method), 62
reset () (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEny

method), 67

reset () (ast_toolbox.envs.GoExploreASTEnv method),
59

reset () (ast_toolbox.policies.go_explore_policy.GoExplorePolicy
method), 83

reset () (ast_toolbox.policies. GoExplorePolicy
method), 82

reset () (ast_toolbox.simulators.ast_simulator.ASTSimulator
method), 104

reset () (ast_toolbox.simulators. ASTSimulator
method), 92

reset () (ast_toolbox.simulators.example_av_simulator.example_av_simi
method), 100
reset () (ast_toolbox.simulators.example_av_simulator. ExampleAVSimul

111
pool_filename (ast_toolbox.algos.go_explore.CellPool
attribute), 54

populate_task () (in module method), 98
ast_toolbox.samplers.parallel_sampler), reset () (ast_toolbox.simulators.example_av_simulator.toy_av_simulator
91 method), 102
process_samples () (ast_toolbox.algos.GA reset () (ast_toolbox.simulators.example_av_simulator. ToyAVSimulator
method), 41 method), 96
process_samples () (ast_toolbox.algos.ga.GA reset () (ast_toolbox.simulators.ExampleAVSimulator
method), 50 method), 94
reset_cached_property ()
R (ast_toolbox.algos.go_explore.Cell method),

random_action () (ast_toolbox.mcts.AdaptiveS lressTesting.AdaptiueStressTest))
method), 72 reset_rsqg () (ast_toolbox.mcts.AdaptiveStressTestingRandomSeed.Adaj

random_action () (ast_toolbox.mcts.AdaptiveS tressTestingRandOfﬁgg@&dAde%tiveStressTestRS
reset_step_count ()

method), 74
record_tabular () (ast_toolbox.algos.GA method) (ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressTest
_41 N method), 72
record_tabular () (ast_toolbox.algos.ga.GA € store_state () (ast_toolbox.simulators.ast_simulator.ASTSimulator
_method), 0 - method), 105
register () (in module ast_toolbox), 39 restore_state () (ast_toolbox.simulators.ASTSimulator
render () (ast_toolbox.envs.ast_env.ASTEnv method), method), 93
64 restore_state () (ast_toolbox.simulators.example_av_simulator.exam
render () (ast_toolbox.envs.ASTEnv method), 62 method), 100
Index 123

AdaptiveStressTestingToolbox, Release 2020.09.01.0

restore_state () (ast_toolbox.simulators.example_av_simulatoriBatimphe AGSimulator

method), 98

set_from_seed () (ast_toolbox.mcts. RNGWrapper.RSG

restore_state () (ast_toolbox.simulators.ExampleAVSimulator method), 78

method), 94
reward (ast_toolbox.algos.go_explore.Cell attribute),
52
rollout ()
76
rollout_getAction () (in module
ast_toolbox.mcts.AST_MCTYS), 70
RSG (class in ast_toolbox.mcts. RNGWrapper), 78

(in module ast_toolbox.mcts. MCTSdpw),

set_ground_truth ()
(ast_toolbox.simulators.example_av_simulator.toy_av_simulator.
method), 103

set_ground_truth ()
(ast_toolbox.simulators.example_av_simulator. ToyAVSimulator
method), 97

set_param_values ()
(ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv

run_simulation () (ast_toolbox.simulators.example_av_simulataneskody, Gimulator. ToyAVSimulator

method), 102

set_param_values ()

run_simulation () (ast_toolbox.simulators.example_av_simulatdqufoyéVBiombmer:GoExploreASTEny method),

method), 96

S

s2node () (in module ast_toolbox.mcts.tree_plot), 79
s2node () (in module ast_toolbox.utils.tree_plot), 111

60
set_params () (ast_toolbox.algos.GA method), 41
set_params () (ast_toolbox.algos.ga.GA method), 50
set_seed() (in module
ast_toolbox.samplers.parallel_sampler),

sample () (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv 9!

method), 67

sample () (ast_toolbox.envs.GoExploreASTEnv
method), 60

sample_paths () (in module
ast_toolbox.samplers.parallel_sampler),
91

save () (ast_toolbox.algos.go_explore.CellPool
method), 54

saveBackwardState () (in module
ast_toolbox.mcts. MCTSdpw), 76

saveForwardState () (in module
ast_toolbox.mcts. MCTSdpw), 76

saveState () (in module

ast_toolbox.mcts. MCTSdpw), 77
score (ast_toolbox.algos.go_explore.Cell attribute), 52
score_weight (ast_toolbox.algos.go_explore.Cell at-
tribute), 52
seed_to_state_itr () (in
ast_toolbox.mcts. RNGWrapper), 78
select_parents () (ast_toolbox.algos.GA method),

module

41

select_parents () (ast_toolbox.algos.ga.GA
method), 50

selectAction () (in module

ast_toolbox.mcts. MCTSdpw), 77

set_value () (ast_toolbox.envs.go_explore_ast_env.GoExploreParamete
method), 69
shutdown_worker ()
(ast_toolbox.samplers.batch_sampler. BatchSampler
method), 90
shutdown_worker ()
(ast_toolbox.samplers.BatchSampler method),
87
simulate ()
method), 64
simulate () (ast_toolbox.envs.ASTEnv method), 62
simulate () (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEnv
method), 68
simulate () (ast_toolbox.envs.GoExploreASTEnv
method), 60
simulate () (ast_toolbox.simulators.ast_simulator.ASTSimulator
method), 105
simulate () (ast_toolbox.simulators.ASTSimulator
method), 93
simulate () (ast_toolbox.simulators.example_av_simulator.example_av._
method), 100
simulate () (ast_toolbox.simulators.example_av_simulator. ExampleAVS
method), 98
simulate () (ast_toolbox.simulators. ExampleAVSimulator
method), 94

(ast_toolbox.envs.ast_env.ASTEnv

sensors () (ast_toolbox.simulators. example_av_simulatoﬁﬂb‘jl%@é%@la@i T@?ﬂﬂ’igiﬂilldﬂﬂbox mcts.MCTSdpw),

method), 102

77

sensors () (ast_toolbox.simulators.example_av_simulatoﬁWVSW?M&W module ast_toolbox.mcts. MDP), T’

method), 97

set_env_to_expert_trajectory_step()

slice_dict () (ast_toolbox.samplers.ast_vectorized_sampler.ASTVector
method), 89

(ast_toolbox.algos.backward_algorithm. Backwardigs@haii ct () (ast_toolbox.samplers.ASTVectorizedSampler

method), 47
set_env_to_expert_trajectory_step()
(ast_toolbox.algos.BackwardAlgorithm

method), 86
slice_dict () (ast_toolbox.samplers.batch_sampler.BatchSampler
method), 90

124

Index

AdaptiveStressTestingToolbox, Release 2020.09.01.0

slice_dict () (ast_toolbox.samplers.BatchSampler terminate_task () (in module
method), 87 ast_toolbox.samplers.parallel_sampler),
softmax () (in module ast_toolbox.utils.exp_utils), 109 91
spec (ast_toolbox.envs.ast_env.ASTEnv attribute), 65 times_chosen (ast_toolbox.algos.go_explore.Cell at-
spec (ast_toolbox.envs.ASTEnv attribute), 63 tribute), 52
spec (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEame s_chosen_since_improved
attribute), 68 (ast_toolbox.algos.go_explore.Cell attribute),
spec (ast_toolbox.envs.GoExploreASTEnv attribute), 61 52
start_worker () (ast_toolbox.samplers.batch_sampler. BataeSamphersen_since_improved_subscore
method), 90 (ast_toolbox.algos.go_explore.Cell attribute),
start_worker () (ast_toolbox.samplers.BatchSampler 52
method), 88 times_chosen_subscore
StateActionNode (class in (ast_toolbox.algos.go_explore.Cell attribute),
ast_toolbox.mcts. MCTSdpw), 76 52
StateActionNode (class in times_visited (ast_toolbox.algos.go_explore.Cell
ast_toolbox.utils.mcts_utils), 110 attribute), 53
StateActionStateNode (class in times_visited_subscore
ast_toolbox.mcts. MCTSdpw), 76 (ast_toolbox.algos.go_explore.Cell attribute),
StateActionStateNode (class in 53
ast_toolbox.utils.mcts_utils), 110 ToyAVSimulator (class in
StateNode (class in ast_toolbox.mcts. MCTSdpw), 76 ast_toolbox.simulators.example_av_simulator),
StateNode (class in ast_toolbox.utils.mcts_utils), 110 95
step (ast_toolbox.algos.go_explore.Cell attribute), 52 ToyAVSimulator (class in
step () (ast_toolbox.envs.ast_env.ASTEnv method), 64 ast_toolbox.simulators.example_av_simulator.toy_av_simulator),
step () (ast_toolbox.envs.ASTEnv method), 62 100
step () (ast_toolbox.envs.go_explore_ast_env.GoExploreASTEmker () (ast_toolbox.simulators.example_av_simulator.toy_av_simulg
method), 68 method), 103
step () (ast_toolbox.envs.GoExploreASTEnv method), tracker () (ast_toolbox.simulators.example_av_simulator. ToyAVSimulat,
60 method), 97
step () (ast_toolbox.simulators.ast_simulatorASTSimulatarrain () (ast_toolbox.algos.backward_algorithm.BackwardAlgorithm
method), 105 method), 48
step () (ast_toolbox.simulators.ASTSimulator method), train () (ast_toolbox.algos.BackwardAlgorithm
93 method), 46
step_simulation () train () (ast_toolbox.algos.GA method), 41
(ast_toolbox.simulators.example_av_simulator.toyt me isiminldtot, TropAbSimigotoga. GA method), 50
method), 103 train () (ast_toolbox.algos.go_explore.GoExplore
step_simulation () method), 56
(ast_toolbox.simulators.example_av_simulator. ToyA&Simulutarst_toolbox.algos.GoExplore method), 45
method), 97 train () (ast_toolbox.algos. MCTS method), 43
stress_test () (in module train () (ast_toolbox.algos.mcts. MCTS method), 57
ast_toolbox.mcts.AST_MCTS), 70 train_once () (ast_toolbox.algos.backward_algorithm.BackwardAlgori
stress_test2 () (in module method), 48
ast_toolbox.mcts.AST_MCTS), 71 train_once () (ast_toolbox.algos.BackwardAlgorithm
sync_and_close_pool () method), 46
(ast_toolbox.algos.go_explore.CellPool train_once () (ast_toolbox.algos.go_explore. GoExplore
method), 54 method), 56
sync_pool () (ast_toolbox.algos.go_explore.CellPool train_once () (ast_toolbox.algos.GoExplore
method), 54 method), 45
transition_model ()
T (ast_toolbox.mcts.AdaptiveStressTesting.AdaptiveStressTest
terminate () (ast_toolbox.policies.go_explore_policy.GoExplorePélEod), 72
method), 83 TransitionModel (class in ast_toolbox.mcts.MDP),
terminate () (ast_toolbox.policies.GoExplorePolicy 71
method), 82

Index 125

AdaptiveStressTestingToolbox, Release 2020.09.01.0

U

update () (ast_toolbox.mcts.AdaptiveStressTesting. AdaptiveStressTest

method), 72

update_car () (ast_toolbox.simulators.example_av_simulator.toy_av_simulator. ToyAVSimulator
method), 103

update_car () (ast_toolbox.simulators.example_av_simulator. ToyAVSimulator
method), 97

update_opt () (ast_toolbox.optimizers.direction_constraint_optimizer.DirectionConstraintOptimizer
method), 81

update_peds () (ast_toolbox.simulators.example_av_simulator.toy_av_simulator. ToyAVSimulator
method), 103

update_peds () (ast_toolbox.simulators.example_av_simulator. ToyAVSimulator
method), 97

\Y

value_approx (ast_toolbox.algos.go_explore.Cell at-
tribute), 53
value_approx_update ()
(ast_toolbox.algos.go_explore.CellPool
method), 54
vectorized (ast_toolbox.policies.go_explore_policy.GoExplorePolicy
attribute), 83
vectorized (ast_toolbox.policies. GoExplorePolicy at-

tribute), 82
W
worker_init_tf () (in module
ast_toolbox.samplers.batch_sampler), 90
worker_init_tf_vars() (in module

ast_toolbox.samplers.batch_sampler), 90

126

Index

	Adaptive Stress Testing Toolbox
	Overview
	Installation
	Documentation
	Development
	Acknowledgements

	Tutorial
	1 Introduction
	2 Creating a Simulator
	3 Creating a Reward Function
	4 Creating the Spaces
	5 Creating a Runner
	6 Running the Example

	Installation
	Usage
	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	2020.06.01.dev1 (2020-05-17)
	2020.09.01.dev1 (2020-09-01)

	ast_toolbox
	ast_toolbox package

	Indices and tables
	Python Module Index
	Index

